Abstract:
The present invention relates to a method for lubricant heating during starting up of a thermodynamic cycle device, wherein the cycle device comprises a working medium with a working substance and a lubricant, an evaporator for evaporating the working substance, a lubricant separator for separating at least part of the lubricant from the working medium which is supplied by the evaporator, an expansion machine which is to be lubricated with the lubricant, and a condenser device with a condenser, and wherein the method comprises the following steps: delivery of lubricant from the lubricant separator to the condenser device and/or to the evaporator during shutdown of the cycle device, as a result of which a working medium which is enriched with lubricant is provided in the condenser device and/or in the evaporator; and heating of the working medium which is enriched with lubricant in the evaporator during starting up of the cycle device. Furthermore, the invention relates to a thermodynamic cycle device which comprises means for delivering lubricant from the lubricant separator to the condenser device and/or to the evaporator during shutdown of the cycle device, as a result of which a working medium which is enriched with lubricant can be provided in the condenser device and/or in the evaporator.
Abstract:
The present invention provides a method for operating a combined heat and power (CHP) plant comprising a heating boiler, a vaporizer, an expansion machine, and a condenser, achieved according to claim 1. The method comprises steps a), when a first condition is met: supplying a working medium to the vaporizer to obtain an at least partially evaporated working medium, feeding the (total) evaporated working medium to the expansion machine, and operating the expansion machine such that the working medium is expanded, supplying the working medium expanded by the expansion machine to the condenser, and transferring heat of the expanded working medium supplied to the condenser to a medium of a heating circuit designed to heat an object; and b) when a second condition is met which is different from the first condition: i) supplying at least a portion of the working medium to the condenser of the CHP plant without the portion of the working medium having been supplied to the expansion machine, and transferring heat of the working medium supplied to the condenser to a medium of a heating circuit designed to heat an object, and/or supplying a medium supplied from the heating boiler to the vaporizer to a heat transfer device in which heat is transferred from this medium to a medium of a heating circuit designed to heat an object.
Abstract:
The invention relates to a method for lubricating an expansion machine (30) in a thermodynamic cycle device, wherein the thermodynamic cycle device comprises the expansion machine, a feed pump (50), a lubricant separator (10) and a working medium containing a lubricant, and wherein the method comprises the following steps: The working medium is subjected to pressure by means of the feed pump. The pressurised working medium is delivered by the feed pump to the lubricant separator. At least part of the lubricant is separated from the working medium by means of the lubricant separator. At least part of the separated lubricant is delivered by the lubricant separator to the expansion machine. The invention further relates to a thermodynamic cycle device comprising a working medium that contains a working fluid and a lubricant, an expansion machine, a feed pump for subjecting the working medium to pressure, and a lubricant separator for separating at least part of the lubricant from the working medium, wherein the cycle device is designed to deliver at least part of the separated lubricant from the lubricant separator to the expansion machine.
Abstract:
The present invention provides a device which comprises: a heat exchanger (1) for transferring heat of a heat-supplying medium to a working medium which differs from said heat-supplying medium, a first supply device designed to provide a flow of the heat-supplying medium at a first temperature from a heat source to the heat exchanger, and a second supply device which is designed to deliver the heat-supplying medium after it has passed through the heat exchanger, and/or a further medium at a second temperature lower than the first temperature, to the flow of the heat-supplying medium at the first temperature.
Abstract:
The invention relates to a method for lubricating an expansion machine (30) in a thermodynamic cycle device, wherein the thermodynamic cycle device comprises the expansion machine, a feed pump (50), a lubricant separator (10) and a working medium containing a lubricant, and wherein the method comprises the following steps: The working medium is subjected to pressure by means of the feed pump. The pressurized working medium is delivered by the feed pump to the lubricant separator. At least part of the lubricant is separated from the working medium by means of the lubricant separator. At least part of the separated lubricant is delivered by the lubricant separator to the expansion machine. The invention further relates to a thermodynamic cycle device comprising a working medium that contains a working fluid and a lubricant, an expansion machine, a feed pump for subjecting the working medium to pressure, and a lubricant separator for separating at least part of the lubricant from the working medium, wherein the cycle device is designed to deliver at least part of the separated lubricant from the lubricant separator to the expansion machine.
Abstract:
The present invention provides a method for open-loop controlling or closed-loop controlling and/or monitoring a device with an expansion engine which is supplied live steam of a working medium that is expanded to exhaust steam in the expansion engine comprising the steps: determining at least one physical parameter of the exhaust steam; determining at least one physical parameter of the live steam based on the determined at least one physical parameter of the exhaust steam; and open-loop controlling or closed-loop controlling and/or monitoring the device based on the at least one determined physical parameter of the live steam. A thermal power plant is also provided in which the method is realized.
Abstract:
A system includes a compression system fluidly coupled to a compartment to compress a first quantity of gas for storage in the compartment, the compression system including a compression path to convey the first quantity of gas; an expansion system fluidly coupled to the compartment to expand a second quantity of gas from the compartment, the expansion system including an expansion path to convey the second quantity of gas; a first path fluidly coupled to the compression path to convey the first quantity of gas to the compartment; a second path fluidly coupled to the expansion path to convey the second quantity of gas from the compartment to the expansion system; and a separation unit fluidly coupled to one of the first path, second path, compression path, and expansion path, wherein the separation unit removes a quantity of carbon dioxide from one of the first and second quantities of gas.
Abstract:
An organic rankine cycle system for recovering and utilizing waste heat from a waste heat source by using a closed circuit of a working fluid is provided. The organic rankine cycle system includes at least one evaporator. The evaporator further includes a surface-treated substrate for promoting nucleate boiling of the working fluid thereby limiting the temperature of the working fluid below a predetermined temperature. The evaporator is further configured to vaporize the working fluid by utilizing the waste heat from the waste heat source.
Abstract:
The invention relates to a device for condensation of vapour expanded in an expansion machine of a thermal power plant to a condensed liquid, in particular containing oil, comprising: a module for condensation, wherein for condensation the module comprises an inlet and one or more pipelines, for example having substantially horizontally disposed pipes; a liquid separator for separating the condensed liquid; and a liquid collector for collecting the separated, condensed liquid.
Abstract:
The present invention relates to a method for lubricant heating during starting up of a thermodynamic cycle device, wherein the cycle device comprises a working medium with a working substance and a lubricant, an evaporator for evaporating the working substance, a lubricant separator for separating at least part of the lubricant from the working medium which is supplied by the evaporator, an expansion machine which is to be lubricated with the lubricant, and a condenser device with a condenser, and wherein the method comprises the following steps: delivery of lubricant from the lubricant separator to the condenser device and/or to the evaporator during shutdown of the cycle device, as a result of which a working medium which is enriched with lubricant is provided in the condenser device and/or in the evaporator; and heating of the working medium which is enriched with lubricant in the evaporator during starting up of the cycle device. Furthermore, the invention relates to a thermodynamic cycle device which comprises means for delivering lubricant from the lubricant separator to the condenser device and/or to the evaporator during shutdown of the cycle device, as a result of which a working medium which is enriched with lubricant can be provided in the condenser device and/or in the evaporator.