Abstract:
A method for generating a signal is provided, the method including: providing a first signal having a first signal frequency; providing a second signal having a second signal frequency or a third signal frequency, wherein the second signal frequency is higher than the third signal frequency; switching the second signal having the second signal frequency to the third signal frequency based on a predefined first signal event of the first signal; and returning the second signal having the third signal frequency to the second signal frequency in response to a predefined second signal event.
Abstract:
A transponder power supply for providing a supply current based on an antenna input signal. The transponder power supply comprises an emergency circuit comprising a charging circuit, an emergency capacitor, and an output stage. The charging circuit is configured to charge the emergency capacitor based on the antenna input signal to a maximum voltage which is higher than a voltage of the antenna input signal. The output stage is configured to provide a contribution to the supply current using a charge of the emergency capacitor.
Abstract:
A test circuit provided to monitor a bandgap circuit that outputs a bandgap reference voltage The test circuit includes a reference voltage test module to output a first pass signal when an operating voltage of the bandgap circuit is greater than a first threshold voltage; an output test module to output a second pass signal when an output voltage of the bandgap circuit is greater than a second threshold voltage; and an overdrive test module to output a third pass signal when a minimum operating voltage of the test circuit is detected. Furthermore, a logic circuit is provided and coupled to outputs of each of the test modules. The logic circuit is further configured to output an operating signal, which indicates that the bandgap reference voltage is stable, after receiving the first, second, and third pass signals.
Abstract:
An inverting cell including a first inverter having first and second inputs; a second inverter having first and second inputs, wherein the second input of the second inverter is connected to the first input of the first inverter and the output of the first and second inverters is connected to the second input of the first inverter; and a third inverter connected between the output of the first and second inverters and the first input of the second inverter.
Abstract:
An apparatus for providing a jittered clock signal has a reverse-biased diode. The reversed-biased diode has a leakage current which decreases a reverse voltage on the diode, time-dependent on a shot-noise of the leakage current. The apparatus for providing a jittered clock signal further has a unit for periodically increasing the reverse voltage of the diode to a value, which is above a switching value and the apparatus has a unit for comparing the reverse voltage of the diode to the switching value and for outputting a jittered clock signal dependent on the comparison.
Abstract:
A voltage regulation and modulation circuit of a contactless device, including an adjustable impedance circuit configured to maintain an amplitude of an input voltage to be less than an amplitude of a reference voltage; a current buffer circuit coupled between the adjustable impedance circuit and a load, and configured to buffer a supply current, which is output from the adjustable impedance circuit, to the load; and a parallel regulator coupled to an output of the current buffer circuit, and configured to maintain a constant supply voltage at the load.
Abstract:
A method for generating a signal is provided, the method including: providing a first signal having a first signal frequency; providing a second signal having a second signal frequency or a third signal frequency, wherein the second signal frequency is higher than the third signal frequency; switching the second signal having the second signal frequency to the third signal frequency based on a predefined first signal event of the first signal; and returning the second signal having the third signal frequency to the second signal frequency in response to a predefined second signal event.
Abstract:
A transponder power supply for providing a supply current based on an antenna input signal. The transponder power supply comprises an emergency circuit comprising a charging circuit, an emergency capacitor, and an output stage. The charging circuit is configured to charge the emergency capacitor based on the antenna input signal to a maximum voltage which is higher than a voltage of the antenna input signal. The output stage is configured to provide a contribution to the supply current using a charge of the emergency capacitor.
Abstract:
A transponder power supply for providing a supply current based on an antenna input signal. The transponder power supply comprises an emergency circuit comprising a charging circuit, an emergency capacitor, and an output stage. The charging circuit is configured to charge the emergency capacitor based on the antenna input signal to a maximum voltage which is higher than a voltage of the antenna input signal. The output stage is configured to provide a contribution to the supply current using a charge of the emergency capacitor.
Abstract:
A test circuit provided to monitor a bandgap circuit that outputs a bandgap reference voltage The test circuit includes a reference voltage test module to output a first pass signal when an operating voltage of the bandgap circuit is greater than a first threshold voltage; an output test module to output a second pass signal when an output voltage of the bandgap circuit is greater than a second threshold voltage; and an overdrive test module to output a third pass signal when a minimum operating voltage of the test circuit is detected. Furthermore, a logic circuit is provided and coupled to outputs of each of the test modules. The logic circuit is further configured to output an operating signal, which indicates that the bandgap reference voltage is stable, after receiving the first, second, and third pass signals.