摘要:
An improved peritoneal dialysis method and system is provided. The method utilizes a tidal oscillating pulse peritoneal dialysis system. To this end, a system for providing peritoneal dialysis to a patient is provided. The system comprises a single catheter that is placed in the patient, a reservoir of dialysate having a volume greater than or equal to three liters, and a single pump for pumping the dialysate from the reservoir into and out of the patient.
摘要:
An automatic means and method for preventing and/or treating hypotension in hemodialysis patients. To this end, a system is provided wherein the patient or healthcare practitioner can cause the hemodialysis machine to automatically deliver sodium to the patient through the dialysate so as to increase blood and extracellular osmolarity, increase blood volume from vascular refilling, and raise blood pressure. This would thereby alleviate any clinical symptoms caused by hypotension during hemodialysis.
摘要:
The present invention provides an improved peritoneal dialysis method and system. The system comprises a single catheter that is placed in the patient, a source of dialysate, and a diatyzer in fluid communication with the source of dialysate and the catheter. The system includes a single fluid pump in fluid communication with the source of dialysate and the catheter. The single pump is capable of pumping the dialysate into and out of the patient and back to the source of dialysate. The method includes the steps of placing a single catheter in a peritoneum of the patient, providing a source of dialysate, coupling the source of dialysate in fluid communication with the catheter on a single fluid circuit, pumping the dialysate from the source of dialysate into and out of the peritoneum using a single pump in the single fluid circuit.
摘要:
A system and method using same are provided for determining the optimum operating conditions of a dialysis process that yields the highest whole body dialysis clearance. The system varies a parameter that effects dialysis efficiency during part of a dialysis run. The system then measures a metabolite concentration in an outflow dialysate. The system develops a metabolite concentration profile as a function of the varied parameter. Based on these measurements, the system correlates the metabolite concentration measurements to determine the optimum parameter setting that yields the maximum metabolite concentration.