Abstract:
Elongate medical devices such as guidewires can be formed from a core wire and a preformed distal cap that is configured to fit over a distal end of the core wire. The distal cap can be attached using a variety of techniques. In particular, the distal cap can be attached to the core wire using laser welding.
Abstract:
Alternative designs, materials and manufacturing methods for guidewires. Some embodiments pertain to a composite guidewire having proximal and distal section, and a connector adapted and configured for permanently joining the proximal section to the distal section. In some embodiments, at least one of the sections is made of a linear-elastic nickel-titanium alloy. Several alternative guidewire tip designs including coiled safety/shaping structures are also disclosed.
Abstract:
Alternative designs, materials and manufacturing methods for guidewires. Some embodiments pertain to a composite guidewire having proximal and distal section, and a connector adapted and configured for permanently joining the proximal section to the distal section. In some embodiments, at least one of the sections is made of a linear-elastic nickel-titanium alloy. Several alternative guidewire tip designs including coiled safety/shaping structures are also disclosed.
Abstract:
The disclosed process for making a high % solids, one-part, curable, essentially flowable or pumpable, high equivalent weight polyurethane (i.e., polyol-polyisocyanate adduct) prepolymer composition involves de-watering the polyol component of the reaction mixture with an alkaline earth metal oxide, preferably calcium oxide; adding the minimum acceptable level of catalyst for the NCO/polyol reaction; exothermically reacting a partially hindered aliphatic polyisocyanate such as isophorone diisocyanate (IPDI) and a partially hindered aromatic polyisocyanate such as 2,4-tolylene diisocyanate seriatim, so that at least about one-fourth of the IPDI reacts before the 2,4-TDI is added; and then adding more catalyst for the curing (e.g. moisture cure) reaction. Careful control over the amounts and selection of raw materials, proper selection of sequences of addition of these amounts and materials, careful de-watering of the reaction mixture, and proper adjustment or selection of isocyanate functionality minimizes random and undesired reactions and side reactions (e.g. chain extension) during prepolymer formation and insures good elastomeric properties in the ultimately cured product. As a result, this well-controlled prepolymer composition can be made efficiently with simple mixing equipment. One of the preferred coating or sealant uses for the prepolymer product is cured elastomeric coatings for the building industry, e.g. as a primary seal in roofing.
Abstract:
The invention provides design, material, manufacturing method, and use alternatives for medical devices. An example medical device includes an elongated core member including an outer surface, an intermediate member disposed about at least a portion of the outer surface of the core member, and a coil disposed about at least a portion of the intermediate member in the distal region. At least a portion of an outer surface of the coil can include an undulating surface in a portion of the distal region.
Abstract:
Alternative designs, materials and manufacturing methods for guidewires. Some embodiments pertain to a composite guidewire having proximal and distal section, and a connector adapted and configured for permanently joining the proximal section to the distal section. In some embodiments, at least one of the sections is made of a linear-elastic nickel-titanium alloy. Several alternative guidewire tip designs including coiled safety/shaping structures are also disclosed.
Abstract:
Alternative designs, materials and manufacturing methods for medical devices. Some embodiments disclosed deal with attachment of an elongated structure, such as a wire or ribbon, or a tubular member, such as a coil, to an elongated member in an elongated device. For example, an elongated core member having defining an outer surface, and an elongated structure including a first portion and a second expanded portion along the length thereof can be provided. An attachment member, such as a centering ring, or the like, is disposed about a portion of the elongated core member and a part of the first portion of the elongated structure. The attachment member defines a lumen and having an inner surface. Part of the first portion of the elongated structure is disposed between the inner surface of the attachment member and the outer surface of the elongated core member. A part of the second portion of the elongated structure is in mechanical engagement with the inner surface of the attachment member and the outer surface the elongated core member to provide a mechanical coupling of the elongated structure between the attachment member and the elongated core member. Some embodiments provide a method of making such a construction, wherein the elongated structure can be moved relative to the attachment member such that the second portion of the elongated structure engages the inner surface of the attachment member and the outer surface the elongated core member to mechanically couple the elongated structure to the elongated core member.
Abstract:
Medical devices and methods of manufacturing medical devices. The medical devices include an elongate member having a proximal portion and a distal portion and a connector assembly disposed adjacent the elongated member to connect the proximal and distal portions, the connector assembly including a radiopaque marker.
Abstract:
Alternative designs, materials and manufacturing methods for guidewires. Some embodiments pertain to a composite guidewire having proximal and distal section, and a connector adapted and configured for permanently joining the proximal section to the distal section. In some embodiments, at least one of the sections is made of a linear-elastic nickel-titanium alloy. Several alternative guidewire tip designs including coiled safety/shaping structures are also disclosed.
Abstract:
This invention describes an occlusion crossing apparatus for creating an opening in occluded tissue at a target location in interventional and surgical applications with simultaneous or nearly simultaneous intravascular imaging. In particular, the present invention is concerned with a magnetically guidable occlusion crossing apparatus and methods of using same together with intravascular ultrasound imaging, said occlusion crossing apparatus being usable in combination with a magnetic field and comprising an ultrasound imaging catheter with at least one ultrasound transducer at its distal tip; the catheter including a lumen through which a magnetically steered guidewire is passed and extends beyond the distal end of the catheter; the guidewire possibly comprising an electrode at its distal end for delivery of ablative electrical energy at a target location in a body lumen; and at least one magnetic guiding element mounted to the guidewire for orienting the portion of the guidewire that extends from the distal tip of the imaging catheter and placing the tip of the guidewire at the desired target location.