Abstract:
A system for wirelessly obtaining physiological data from a subject includes a sensor patch and a separate electronics package. The sensor patch is disposed on and adheres to the subject, and includes a first part of a releasable electrical connector. An electronics package includes a second part of the first releasable electrical connector, which is used to physically and electrically connect the electronics package to the sensor patch. The electronics package includes a flexible substrate, with shells set on this substrate. The shells enclose the electronics. The shells are connected by a flexible circuit board. Analog front end circuitry is placed in one shell, while the wireless transceiver is placed in the other shell.
Abstract:
The present disclosure is directed to a system for the treatment of a sleep disorder through stimulation of the hypoglossal nerve or the geniohyoid muscle of a patient, e.g. a human patient. In general, the system comprises three components, namely a sensing component 50, a stimulation component 100, and a control system 200. In some embodiments, the control system 200 may be embedded within the sensing component 50, or the control system 200 may be embedded within the stimulation component 100.
Abstract:
A system for wirelessly obtaining physiological data from a subject includes a sensor patch and a separate electronics package. The sensor patch is disposed on and adheres to the subject, and includes a first part of a releasable electrical connector. An electronics package includes a second part of the first releasable electrical connector, which is used to physically and electrically connect the electronics package to the sensor patch. The electronics package includes a flexible substrate, with shells set on this substrate. The shells enclose the electronics. The shells are connected by a flexible circuit board. Analog front end circuitry is placed in one shell, while the wireless transceiver is placed in the other shell.
Abstract:
A system for wirelessly obtaining physiological data from a subject includes a sensor patch and a separate electronics package. The sensor patch is disposed on and adheres to the subject, and includes a first part of a releasable electrical connector. An electronics package includes a second part of the first releasable electrical connector, which is used to physically and electrically connect the electronics package to the sensor patch. The electronics package includes a flexible substrate, with shells set on this substrate. The shells enclose the electronics. The shells are connected by a flexible circuit board. Analog front end circuitry is placed in one shell, while the wireless transceiver is placed in the other shell.
Abstract:
A system including a plurality of wireless sensors for monitoring one or more parameters of a subject is provided. The wireless sensors can be attachable to or implantable in the subject and form a network. The sensors can include a sensing component configured to detect a signal corresponding to at least one condition of the subject. The sensors further can include a communication component configured to wirelessly transmit the detected signal to at least another of the plurality of wireless sensors, and wirelessly receive a signal transmitted from at least one of the remaining sensors in the network.
Abstract:
A system for detecting an electrocardiogram (ECG) signal of a subject includes a substrate that is placed on and adheres to the skin over the sternum of the subject. First, second and third electrodes are disposed on the substrate, each of which has an end for contacting a respective area of skin. Directional positioning from the second electrode to the first electrode is substantially perpendicular to directional positioning from the third electrode to the first electrode. A circuit on the first substrate is connected to the electrodes and generates a first ECG channel measuring a difference in electric signals between the first electrode and the second electrode, and a second ECG channel measuring a difference in electric signals between the first electrode and the third electrode. A communication component on the substrate wirelessly transmits ECG information from the circuit to an external device.
Abstract:
A system for wirelessly obtaining physiological data from a subject includes a sensor patch and a separate electronics package. The sensor patch is disposed on and adheres to the subject, and includes a first part of a releasable electrical connector. An electronics package includes a second part of the first releasable electrical connector, which is used to physically and electrically connect the electronics package to the sensor patch. The electronics package includes a flexible substrate, with shells set on this substrate. The shells enclose the electronics. The shells are connected by a flexible circuit board. Analog front end circuitry is placed in one shell, while the wireless transceiver is placed in the other shell.
Abstract:
A system for wirelessly obtaining physiological data from a subject includes a sensor patch and a separate electronics package. The sensor patch is disposed on and adheres to the subject, and includes a first part of a releasable electrical connector. An electronics package includes a second part of the first releasable electrical connector, which is used to physically and electrically connect the electronics package to the sensor patch. The electronics package includes a flexible substrate, with shells set on this substrate. The shells enclose the electronics. The shells are connected by a flexible circuit board. Analog front end circuitry is placed in one shell, while the wireless transceiver is placed in the other shell.
Abstract:
A system including a plurality of wireless sensors for monitoring one or more parameters of a subject is provided. The wireless sensors can be attachable to or implantable in the subject and form a network. The sensors can include a sensing component configured to detect a signal corresponding to at least one condition of the subject. The sensors further can include a communication component configured to wirelessly transmit the detected signal to at least another of the plurality of wireless sensors, and wirelessly receive a signal transmitted from at least one of the remaining sensors in the network.
Abstract:
A device adapted to attach to a subject for detecting an ECG signal of the subject. The device includes a first, a second, and a third electrode, where the electrodes form an orthogonal configuration. Two channels of ECG data can be obtained using a common electrode, and can be further combined to obtain a further channel using vector mathematics. The channel combination can be performed at vector angles suitable for optimizing the detection of various features of the ECG spectra of the subject. A method of using an implantable cardiac device together with surface-attached wireless sensor(s) is also provided where the acquired data from the implantable cardiac device and from the surface-attached wireless sensor(s) are both used for diagnosing patient's heart conditions and administering appropriate therapies.