Abstract:
A magnetic sensor for identifying small magnetic particles bound to a substrate includes a regular, planar orthogonal array of MTJ cells formed within or beneath that substrate. Each MTJ cell has a high aspect ratio and positions of stable magnetic equilibrium along an easy magnetic axis and positions of unstable magnetic equilibrium along a hard magnetic axis. By initializing the magnetizations of each MTJ cell in its unstable hard-axis position, the presence of even a small magnetic particle can exert a sufficient perturbative strayfield to tip the magnetization to its stable position. The magnetization change in an MTJ cell can be measured after each of two successive opposite polarity magnetizations of a bound particle and the presence of the particle thereby detected.
Abstract:
A planar array of GMR or TMR sensor elements with planar free and pinned layers is used as the basis of a sensor for detecting the presence of small magnetized particles. In particular, the sensor is used for detecting the presence of magnetized particles bonded to biological molecules that are themselves bonded to a substrate. The magnetized particles on the molecules are detected by the sensors as a result of the interaction between the stray fields of the particles and the magnetic configuration of the sensors. By forming a co-planar layer of soft magnetic material over the sensor or its array, the external field used to magnetize the particles is self-aligned perpendicularly to the sensor plane whereby it does not interfere with the stray fields of the particles.
Abstract:
A method of fabricating a current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) sensor stack, wherein the parasitic resistance of the high-resistance antiferromagnetic (AFM) pinning layer is effectively reduced by enlarging its surface area and forming between it and the remainder of the sensor stack an equal area, contiguous, thin, highly conductive ferromagnetic layer, the current channeling (CCL) layer. The magnetic properties and increased current carrying capacity of the CCL allows the AFM pinning layer to effectively couple to the pinned layer while eliminating the effect of its high resistance on the sensor sensitivity as measured by the GMR ratio, ΔR/R.
Abstract:
An integrated light deflector and fabrication method are disclosed. In accordance with the method, a mold is constructed above the surface of a substrate using a thick photo resist and a mask to define a deflector plane. A collimated light beam is applied at an appropriate angle of incidence to the photo resist material and mask. The developed resist provides a mold into which the deflector body is cast, leaving a deflector body whose front surface serves as the deflecting surface.
Abstract:
A semiconductor device, formed on a wafer, comprises an array of laser diodes, each emitting a beam parallel to the wafer surface and, integrated with the array, individually tilted deflecting mirrors forming an array of virtual sources. The virtual sources are spaced more closely together than the physical separation of the laser diodes and can even be coincident, thereby reducing the apparent spacing between the beam origins. The reflected beams are substantially perpendicular to the wafer providing a "surface-emitting" device. The required deflector configuration can be fabricated using a single undirectional process, the mirror positions and orientations being determined by proper segment geometry of the etch-mask.
Abstract:
A magnetoresistive (MR) read transducer comprising an MR layer having passive end regions separated by a central active region. A longitudinal bias is produced by a thin film of hard magnetic material in the end regions only, and the thin film of hard magnetic material is spaced from the MR layer by a nonmagnetic spacer layer so that a magnetostatic longitudinal bias is produced of a level to maintain the passive end regions of the MR layer in a stable state.
Abstract:
A permalloy-first bubble switch has two curved propagation elements positioned on a layer of bubble domain supporting material. A curved conductor is superimposed on top of the propagation elements so that a current passing through the conductor element permits a bubble to be moved from one curved propagation element to the second curved propagation element.
Abstract:
Apparatus is provided using as an integral portion thereof a confined array (such as a lattice) of interactive elements, the interactions among which are largely determinative of the positions of the interactive elements since there is a minimum of position determining structure for the elements within the area of confinement. Magnetic elements are suitable interactive elements, and in particular embodiments are shown using magnetic bubble domains. Structure is provided to form lattice arrays of interactive elements, to confine the lattice arrays, and to access elements outside and within the lattice array. In addition, various structures are provided to code the interactive elements for storage of information, and reading devices are provided to detect the information state of the interactive elements when these elements are coded. Various types of lattices and interactive elements can be used.
Abstract:
A planar array of GMR or TMR sensor elements with planar free and pinned layers is used as the basis of a sensor for detecting the presence of small magnetized particles. In particular, the sensor is used for detecting the presence of magnetized particles bonded to biological molecules that are themselves bonded to a substrate. The magnetized particles on the molecules are detected by the sensors as a result of the interaction between the stray fields of the particles and the magnetic configuration of the sensors. By forming a co-planar layer of soft magnetic material over the sensor or its array, the external field used to magnetize the particles is self-aligned perpendicularly to the sensor plane whereby it does not interfere with the stray fields of the particles.
Abstract:
Cooling structure for direct heat transfer between an active layer of a chip in which electric elements are formed and a heat sink are disclosed. The inventive cooling structure consists of a current/voltage supply level, with metal structures and insulation spacers and/or layers, partly covered by an insulation layer and followed by a heat transfer structure. A heat transfer bridge is in thermal connection with the heat transfer structure that provides for heat flux between the inventive cooling structure and the heat sink. The inventive cooling structure of this invention can be used with semiconductor devices and/or with opto-electronic devices.