Abstract:
Methods for manufacturing firearms and firearm components from bonded multi-metallic base materials comprising at least two dissimilar metallic materials having different properties, such as weight, density, wear resistance, durability, hardness, and the like, bonded to one another are provided. The bonded multi-metallic materials may be explosively bonded multi-metallic materials. The methods involve providing a bonded multi-metallic substrate material, cutting the rough shape of a component from the bonded multi-metallic substrate material, and machining the rough component shape to a desired three dimensional configuration of the component
Abstract:
Firearms and firearm components are constructed from bonded multi-metallic base materials comprising at least two dissimilar metallic materials having different properties, such as weight, density, wear resistance, durability, hardness, and the like, bonded to one another. The components are fabricated such that the metallic material having higher impact- and wear-resistance is positioned at areas that experience impact, or that include bearing points, wear points, and interfaces with other components, while a lighter weight metallic material is positioned at component locations that don't have rigorous material property requirements. The bonded multi-metallic materials may be explosively bonded multi-metallic materials.
Abstract:
Firearms and firearm components are constructed from bonded multi-metallic base materials comprising at least two dissimilar metallic materials having different properties, such as weight, density, wear resistance, durability, hardness, and the like, bonded to one another. The components are fabricated such that the metallic material having higher impact- and wear-resistance is positioned at areas that experience impact, or that include bearing points, wear points, and interfaces with other components, while a lighter weight metallic material is positioned at component locations that don't have rigorous material property requirements. The bonded multi-metallic materials may be explosively bonded multi-metallic materials.
Abstract:
Methods for manufacturing firearms and firearm components from bonded multi-metallic base materials comprising at least two dissimilar metallic materials having different properties, such as weight, density, wear resistance, durability, hardness, and the like, bonded to one another are provided. The bonded multi-metallic materials may be explosively bonded multi-metallic materials. The methods involve providing a bonded multi-metallic substrate material, cutting the rough shape of a component from the bonded multi-metallic substrate material, and machining the rough component shape to a desired three dimensional configuration of the component.
Abstract:
Firearms and firearm components are constructed from bonded multi-metallic base materials comprising at least two dissimilar metallic materials having different properties, such as weight, density, wear resistance, durability, hardness, and the like, bonded to one another. The components are fabricated such that the metallic material having higher impact- and wear-resistance is positioned at areas that experience impact, or that include bearing points, wear points, and interfaces with other components, while a lighter weight metallic material is positioned at component locations that don't have rigorous material property requirements. The bonded multi-metallic materials may be explosively bonded multi-metallic materials.
Abstract:
Firearms and firearm components are constructed from bonded multi-metallic base materials comprising at least two dissimilar metallic materials having different properties, such as weight, density, wear resistance, durability, hardness, and the like, bonded to one another. The components are fabricated such that the metallic material having higher impact- and wear-resistance is positioned at areas that experience impact, or that include bearing points, wear points, and interfaces with other components, while a lighter weight metallic material is positioned at component locations that don't have rigorous material property requirements. The bonded multi-metallic materials may be explosively bonded multi-metallic materials.