摘要:
The application discloses a method for making bone at a bone defect site which includes generating a member of a transforming growth factor superfamily of proteins; generating a population of cultured connective tissue cells that may contain a vector encoding a gene, or a population of cultured connective tissue cells that do not contain any vector encoding a gene; and transferring the protein and the connective tissue cells of to the bone defect site, and allowing the bone defect site to make the bone.
摘要:
The subject invention is directed to a mixed cell composition to generate a therapeutic protein at a target site by providing a first population of mammalian cells transfected or transduced with a gene that is sought to be expressed, and a second population of mammalian cells that have not been transfected or transduced with the gene, wherein endogenously existing forms of the second population of mammalian cells are decreased at the target site, and wherein generation of the therapeutic protein by the first population of mammalian cells at the target site stimulates the second population cells to induce a therapeutic effect.
摘要:
The subject invention is related to a cell-mediated gene therapy treatment for orthopedic disease using a member belonging to the transforming growth factory-&bgr; (TGF-&bgr;) superfamily. TGF-&bgr; gene therapy as a new treatment method for degenerative arthritis is demonstrated. After transfection of TGF-&bgr; cDNA expression vectors into fibroblasts (NIH 3T3-TGF-&bgr;1), the cells were injected into rabbit achilles tendon and knee joints with artificially-made cartilage defects. Intratendinous injections were performed to determine the optimal concentration for in vivo expression. Partially defected cartilage model was made to simulate degenerative arthritis of the knee joint. The partial cartilage defect treated with the cell-mediated gene therapy procedure was covered by newly formed hyaline cartilage which indicates that the cells survived and stimulated matrix formation in this area. Completely denuded cartilage areas were covered by fibrous collagen.
摘要:
The subject invention is related to a cell-mediated gene therapy treatment using a cell composition that includes bioadhesive material. The bioadhesive material allows targeted and localized delivery of therapeutic somatic cells to the site of interest.
摘要:
The subject invention is related to a cell-mediated gene therapy treatment for orthopedic disease using a member belonging to the transforming growth factor-&bgr; (TGF-&bgr;) superfamily. TGF-&bgr; gene therapy as a new treatment method for degenerative arthritis is demonstrated. After transfection of TGF-&bgr; cDNA expression vectors into fibroblasts (NIH 3T3-TGF-&bgr;1), the cells were injected into rabbit achilles tendon and knee joints with artificially-made cartilage defects. Intratendinous injections were performed to determine the optimal concentration for in vivo expression. Partially defected cartilage model was made to simulate degenerative arthritis of the knee joint. The partial cartilage defect treated with the cell-mediated gene therapy procedure was covered by newly formed hyaline cartilage which indicates that the cells survived and stimulated matrix formation in this area. Completely denuded cartilage areas were covered by fibrous collagen.
摘要:
The subject invention is related to a cell-mediated gene therapy treatment for orthopedic disease using a member belonging to the transforming growth factor-β (TGF-β) superfamily. TGF-β gene therapy as a new treatment method for degenerative arthritis is demonstrated. After transfection of TGF-β cDNA expression vectors into fibroblasts (NIH 3T3-TGF-β1), the cells were injected into rabbit achilles tendon and knee joints with artificially-made cartilage defects. Intratendinous injections were performed to determine the optimal concentration for in vivo expression. Partially defected cartilage model was made to simulate degenerative arthritis of the knee joint. The partial cartilage defect treated with the cell-mediated gene therapy procedure was covered by newly formed hyaline cartilage which indicates that the cells survived and stimulated matrix formation in this area. Completely denuded cartilage areas were covered by fibrous collagen.
摘要:
The application discloses a method for making bone at a bone defect site for a person suffering from low bone mass which includes inserting a gene encoding a protein having bone regenerating function into a connective tissue cell operably linked to a promoter, and transplanting the mammalian cell into the bone defect site, and allowing the bone defect site to make the bone.
摘要:
The subject invention is directed to a mixed cell composition to generate a therapeutic protein at a target site by providing a first population of mammalian cells transfected or transduced with a gene that is sought to be expressed, and a second population of mammalian cells that have not been transfected or transduced with the gene, wherein endogenously existing forms of the second population of mammalian cells are decreased at the target site, and wherein generation of the therapeutic protein by the first population of mammalian cells at the target site stimulates the second population cells to induce a therapeutic effect.
摘要:
The subject invention is related to a cell-mediated gene therapy treatment for orthopedic disease using a member belonging to the transforming growth factor-β (TGF-β) superfamily. TGF-β gene therapy as a new treatment method for degenerative arthritis is demonstrated. After transfection of TGF-β cDNA expression vectors into fibroblasts (NIH 3T3-TGF-β1), the cells were injected into rabbit achilles tendon and knee joints with artificially-made cartilage defects. Intratendinous injections were performed to determine the optimal concentration for in vivo expression. Partially defected cartilage model was made to simulate degenerative arthritis of the knee joint. The partial cartilage defect treated with the cell-mediated gene therapy procedure was covered by newly formed hyaline cartilage which indicates that the cells survived and stimulated matrix formation in this area. Completely denuded cartilage areas were covered by fibrous collagen.