摘要:
A liquid transfer apparatus comprises an output terminal device, a receiving terminal device, a connecting pipeline, and a control device. The output terminal device includes a first pressurizing member for filling the first storage container with high-pressure air. The receiving terminal device includes an air pressure adjusting member for adjusting the air pressure inside the second storage container. When the liquid transfer apparatus is in a non-transferring state, the air pressure inside the second storage container is high enough to prevent the liquid in the first storage container flow into the connecting pipeline. And when the liquid transfer apparatus is in a transferring state, the pressure difference between the inside of the first storage container and the inside of the second storage container is sufficient to drive the liquid in the first storage container to enter the second storage container.
摘要:
A wafer surface test preprocessing device includes a chamber; a supporting component disposed in the chamber; an atomizer connected to a lateral side of the chamber; a cooling component connected to a bottom of the chamber; and a lid disposed on a top of the chamber. With the wafer surface test preprocessing device having the cooling component to thereby dispense with a ventilation device and collect hydrofluoric acid residues in the chamber at the bottom of the chamber, thereby saving costs and time effectively.
摘要:
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
摘要:
The present invention provides a method for extinguishing fire, comprising: (A) preparing a CFC-free and phosphor-free aqueous fire extinguishing agent using a composition comprising 1-70 wt % of a sulfosuccinic acid ester; 1-30 wt % of a wetting agent; and rest in water; (B) diluting the CFC-free and phosphor-free aqueous fire extinguishing agent by water to form an aqueous solution; and (C) spraying the aqueous solution to a space containing a burning substance. The present invention not only enhances the wettability and permeability of water, but also increases its affinity to burning substances; accelerates cooling of burning substances; inhibits further combustion; reduces water for firefighting; reduces smoke and emission; mitigates environmental problems caused by haze substances from combustions on the ground and in the air and all possible related health hazards. The CFC-free and phosphor-free aqueous fire extinguishing agent is biodegradable, non-toxic to human and environment, and easy to use.
摘要:
Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.
摘要翻译:通常提供多孔电极,其中孔隙度具有低弯曲度。 在一些实施例中,多孔电极可被设计为填充电解质并用于电池中,并且可以包括在电池充电和放电期间离子传输的主要方向上的低弯曲度。 在一些实施例中,电极可以具有高体积分数的电极活性材料(即,低孔隙率)。 上述属性可以允许电极以比同类电极更高的能量密度,每单位面积电极的容量(mAh / cm 2)和更大的厚度制造,同时仍然在使用期间提供电池中活性材料的高利用率 。 因此,与使用具有相对高曲率孔的常规设计的电极的电池相比,电极可用于生产具有高能量密度,高功率或两者的电池。
摘要:
A compound comprising a composition Ax(M′1−aM″a)y(XD4)z, Ax(M′1−aM″a)y(DXD4)z, or Ax(M′1−aM″a)y(X2D7)z, (A1−aM″a)xM′y(XD4)z, (A1−aM″a)xM′y(DXD4)z, or (A1−aM″a)xM′y(X2D7)z. In the compound, A is at least one of an alkali metal and hydrogen, M′ is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M″ any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001
摘要:
An electrostatic speaker and a method for manufacturing the speaker are disclosed. Said speaker comprises a vibrating film; an electrode portion disposed on a surface of the vibrating film and joined with the vibrating film; and a conductive backplate spaced from the electrode portion by a distance, the conductive backplate forming a plurality of holes, the vibrating film being deformed and vibrated to generate and release a sound through the holes due to a variation of an electric field generated between the conductive backplate and the electrode portion, wherein the conductive backplate is covered by a polymer layer serving as a protective film. The covering polymer layer on the conductive backplate is capable of improving the stability of the electrostatic speaker and increasing its lifespan.
摘要:
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionicaily conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
摘要:
An electrostatic electroacoustic device comprising a first electrode configured to receive an audio signal, a second electrode configured to receive the audio signal, a first electret between the first electrode and the second electrode, the first electret including at least one dielectric layer containing electrostatic charges, a second electret between the first electrode and the second electrode, the second electret including at least one dielectric layer containing electrostatic charges, and a conductive layer sandwiched between the first electret and the second electret, the conductive layer, the first electret and the second electret being capable of vibratory motion relative to the first electrode and the second electrode based on the audio signal.
摘要:
A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.