Abstract:
Catalysts and methods for making and using the same are provided. The method for fabricating a catalyst may includes contacting a supported catalyst with a monomer under conditions that reduce an overall charge of the catalyst to less than about 75% of an initial charge of the catalyst. A method for polymerization may include introducing a pre-polymerized catalyst and one or more olefins into a gas phase fluidized bed reactor, operating the reactor at conditions sufficient to produce a polyolefin, wherein the polymerization is carried out in the substantial absence of any continuity additives.
Abstract:
Bimetallic catalysts, and methods of producing a bimetallic catalyst comprising a modified Ziegler-Natta catalyst and a metallocene are provided, in one embodiment the method including combining: (a) a Ziegler-Natta catalyst comprising a Group 4, 5 or 6 metal halide and/or oxide, optionally including a magnesium compound, with (b) a modifier compound (“modifier”), wherein the modifier compound is a Group 13 alkyl compound, to form a modified Ziegler-Natta catalyst. Also provided is a method of olefin polymerization using the bimetallic catalyst of the invention. The modified Ziegler-Natta catalyst is preferably non-activated, that is, it is unreactive towards olefin polymerization alone. In one embodiment, the molar ratio of the Group 13 metal (of the modifier) to the Group 4, 5 or 6 metal halide and/or oxide is less than 10:1 in one embodiment. The bimetallic catalysts of the present invention are useful in producing bimodal polymers, particularly bimodal polyethylene, having a Polydispersity (Mw/Mn) of from 12 to 50. These bimodal polyolefins are useful in such articles as pipes and films.
Abstract:
Methods are provided to prepare a catalyst system that includes at least one titanium compound, at least one magnesium compound, at least one electron donor compound, at least one activator compound, and at least one silica support material, the at least one silica support material having a median particle size in the range of from 20 to 50 microns with no more than 10% of the particles having a size less than 10 microns and no more than 10% of the particles having a size greater than 50 microns and average pore diameter of at least ≧220 angstroms.
Abstract:
A process to prepare a catalyst composition that includes combining catalyst precursors in a recycled organic reaction solvent; allowing the catalyst precursors to react to form a catalyst compound; and separating the formed catalyst compound from the reaction solvent is disclosed.
Abstract:
A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
Abstract:
A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
Abstract:
A polymerization process includes contacting the following in a gas-phase reactor system under polymerization conditions for making a polymer product: a metallocene-based catalyst system including a supported constrained geometry catalyst, at least one monomer, and an additive selected from a group consisting of an aluminum distearate, an ethoxylated amine, and a mixture thereof. The additive may be selected from a group consisting of an aluminum distearate, an ethoxylated amine, polyethylenimines, and other additives suitable for use in the production of polymers for food contact applications and end products, including a mixture of a polysulfone copolymer, a polymeric polyamine, and oil-soluble sulfonic acid, in a carrier fluid, and mixtures thereof.
Abstract:
Bimetallic catalysts, methods of producing bimetallic catalysts comprising a modified Ziegler-Natta catalyst and a metallocene, and methods of olefin polymerization using such catalysts are provided. The method of producing the bimetallic catalyst may include combining (a) a Ziegler-Natta catalyst comprising a Group 4, 5 or 6 metal halide and/or oxide, optionally including a magnesium compound, with (b) a modifier compound (“modifier”), wherein the modifier compound is a Group 13 alkyl compound, to form a modified Ziegler-Natta catalyst. The modified Ziegler-Natta catalyst is preferably non-activated, that is, it is unreactive towards olefin polymerization alone. The molar ratio of the Group 13 metal (of the modifier) to the Group 4, 5 or 6 metal halide and/or oxide may be less than 10:1. The bimetallic catalysts are useful in producing bimodal polymers, particularly bimodal polyethylene, having a Polydispersity (Mw/Mn) of from 12 to 50, which may be used in pipes and films.
Abstract:
The invention relates to catalyst compositions including at least one catalyst compound and at least one continuity additive such as poly-oxo-metal carboxylate compound and their use in the polymerization of olefins.
Abstract:
A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.