Abstract:
A fire detector has a detection unit working on the optical scattered-light principle, as well as an electronic evaluation unit. An acoustic and/or optical warning device outputs an acoustic and/or optical alarm when a fire is detected. The fire detector has an energy storage device, in particular a battery, for the autarkic supply of electrical power to the fire detector as well as a voltage measuring unit for measuring a battery voltage present at the energy storage device. A warning device outputs an acoustic warning if the battery voltage falls below a first voltage threshold. The fire detector also has a sensor sensitive to ambient light and a device for suppressing the output of the acoustic warning if the ambient light falls below a predefinable brightness threshold. The detection unit is an open scattered-light detection unit with a detection space outside the fire detector and the sensor sensitive to ambient light is at the same time an optical receiver of the scattered-light detection unit.
Abstract:
A device for the nondestructive material testing of an at least sectionally solid test subject by applying ultrasonic waves to the test subject and detecting the ultrasonic waves reflected inside the test subject is provided The device includes at least one testing head for transmitting the ultrasonic waves and for detecting the ultrasonic waves reflected from the test subject, at least one mobile carriage, on which the testing head is attached, and an elongate rail for guiding the carriage, which is adapted to the structure of the surface of the test subject. To this end, the carriage may be moved along the rail.
Abstract:
An ultrasound device for medical application has a transducer formed by a number of transducer elements. The transducer elements are carried on a flexible support that allows the transducer elements to be configured to an examination subject. A measurement device determines, for each transducer element, a distance or a rotation thereof with respect to a reference point. The reference point can be a point that is physically a part of the ultrasound device, or can be a virtual reference point.
Abstract:
A method for the non-destructive material testing of a test object that is at least sectionally solid by subjecting the test object to ultrasonic waves and capturing the ultrasonic waves reflected within the test object is provided. The method includes computer-supported division of the test object into a predetermined number of volume elements, subjecting the test object to a sound field while scanning the surface of at least a section of a surface of the test object, detecting the sound waves reflected on the volume elements while scanning the surface or the section of the surface of the test object, and in-phase addition of the sound waves reflected at the same volume elements and detected at measuring positions on the surface of the test object. A central beam is directed at the volume element in each measuring position, wherein the central beam has the maximum intensity of the sound field.
Abstract:
The invention relates to a method which is used to detect defects on a component of a turbine. Said method comprises the following steps; at least one ultrasonic signal is emitted and captured by means of a group beam examination head on a flat region of the component which is to be examined. The invention is characterized according to the following steps: the group of the beam examination heads are distributed into several virtual examination heads and at least one ultrasonic signal is emitted and captured by at least two of the virtual examination heads which is directed to an individual flat region which is to be examined.
Abstract:
A fire detector has a detection unit working on the optical scattered-light principle, as well as an electronic evaluation unit. An acoustic and/or optical warning device outputs an acoustic and/or optical alarm when a fire is detected. The fire detector has an energy storage device, in particular a battery, for the autarkic supply of electrical power to the fire detector as well as a voltage measuring unit for measuring a battery voltage present at the energy storage device. A warning device outputs an acoustic warning if the battery voltage falls below a first voltage threshold. The fire detector also has a sensor sensitive to ambient light and a device for suppressing the output of the acoustic warning if the ambient light falls below a predefinable brightness threshold. The detection unit is an open scattered-light detection unit with a detection space outside the fire detector and the sensor sensitive to ambient light is at the same time an optical receiver of the scattered-light detection unit.
Abstract:
A method of brazing including melting a surface region (26) of a substrate (12, 14, 22) and contacting a braze material (10) with the melted surface region, the braze material including a plurality of braze fillers (16) and a plurality of carbon structures (18). The method further includes subjecting the braze material to an amount of energy effective to melt the braze fillers but not the carbon structures, and cooling the braze material to form a brazement (28, 32) including the carbon structures within at least a portion of the substrate. The brazement includes a gradient (30) of the carbon structures, wherein a concentration of the carbon structures increases in a direction away from an interior of the substrate.
Abstract:
An ultrasound device for medical application has a transducer formed by a number of transducer elements. The transducer elements are carried on a flexible support that allows the transducer elements to be configured to an examination subject. A measurement device determines, for each transducer element, a distance or a rotation thereof with respect to a reference point. The reference point can be a point that is physically a part of the ultrasound device, or can be a virtual reference point.
Abstract:
An apparatus for ultrasound testing of a component includes an ultrasound test head and a guide unit. The guide unit is configured in such a manner that the test head is continuously moved in at least one translation direction, wherein an incidence angle of the test head with respect to a surface of the component is continuously changed at the same time.
Abstract:
A device for the nondestructive material testing of an at least sectionally solid test subject by applying ultrasonic waves to the test subject and detecting the ultrasonic waves reflected inside the test subject is provided The device includes at least one testing head for transmitting the ultrasonic waves and for detecting the ultrasonic waves reflected from the test subject, at least one mobile carriage, on which the testing head is attached, and an elongate rail for guiding the carriage, which is adapted to the structure of the surface of the test subject. To this end, the carriage may be moved along the rail.