摘要:
Methods for depositing a passivation layer on a photovoltaic cell are disclosed. Methods include depositing a passivation layer comprising at least a bi-layer further comprising a silicon oxide and a silicon nitride layer. The silicon precursor(s) used for the deposition of the silicon oxide layer or the silicon nitride layer, respectively, is selected from the family of Si(OR1)xR2y, or from the family of SiRxHy, silane, and combinations thereof; wherein x+y=4, y≠4; R1 is C1-C8 alkyl; R2 is selected from the group consisting of hydrogen, C1-C8 alkyl, and NR*3; R is C1-C8 alkyl or NR*3; wherein R* can be hydrogen or C1-C8 alkyl; C1-C8 alkyl can be linear, branched or cyclic, the ligand can be saturated, unsaturated, or aromatic (for cyclic alkyl). Photovoltaic devices containing the passivation layers are also disclosed.
摘要翻译:公开了在光伏电池上沉积钝化层的方法。 方法包括沉积包括至少另外包含氧化硅和氮化硅层的双层的钝化层。 用于沉积硅氧化物层或氮化硅层的硅前体分别选自Si(OR 1)x R 2y族或SiR x H y族,硅烷族及其组合的族; 其中x + y = 4,y <4; R1是C1-C8烷基; R2选自氢,C1-C8烷基和NR * 3; R是C 1 -C 8烷基或NR * 3; 其中R *可以是氢或C1-C8烷基; C1-C8烷基可以是直链,支链或环状的,配体可以是饱和的,不饱和的或芳族的(对于环状烷基)。 还公开了含有钝化层的光伏器件。
摘要:
A chemical vapor deposition method for producing a porous organosilica glass film comprising: introducing into a vacuum chamber gaseous reagents including at least one precursor selected from the group consisting of an organosilane and an organosiloxane, and a porogen that is distinct from the precursor, wherein the porogen is a C4 to C14 cyclic hydrocarbon compound having a non-branching structure and a degree of unsaturation equal to or less than 2; applying energy to the gaseous reagents in the vacuum chamber to induce reaction of the gaseous reagents to deposit a preliminary film on the substrate, wherein the preliminary film contains the porogen; and removing from the preliminary film substantially all of the labile organic material to provide the porous film with pores and a dielectric constant less than 2.6.
摘要:
A stabilized cyclic alkene composition comprising one or more cyclic alkenes, and at least one stabilizer compound having the Formula (I), R1,R2,R3,R4,R5(C6)OH Formula (I) wherein R′ through R5 can each independently be H, OH, C1-C8 linear, branched, or cyclic alkyl, C1-C8 linear, branched, or cyclic alkoxy or substituted or unsubstituted aryl, and wherein the stabilizer compound is present in an amount greater than 200 ppm up to 20,000 ppm and has a boiling point lower than 265° C. A method for forming a layer of carbon-doped silicon oxide on a substrate, which uses the stabilized alkene composition and a silicon containing compound.
摘要:
A deposition for producing a porous organosilica glass film comprising: introducing into a vacuum chamber gaseous reagents including one precursor of an organosilane or an organosiloxane, and a porogen distinct from the precursor, wherein the porogen is aromatic in nature; applying energy to the gaseous reagents in the chamber to induce reaction of the gaseous reagents to deposit a film, containing the porogen; and removing substantially all of the organic material by UV radiation to provide the porous film with pores and a dielectric constant less than 2.6.
摘要:
A method for preparing an interlayer dielectric to minimize damage to the interlayer's dielectric properties, the method comprising the steps of: depositing a layer of a silicon-containing dielectric material onto a substrate, wherein the layer has a first dielectric constant and wherein the layer has at least one surface; providing an etched pattern in the layer by a method that includes at least one etch process and exposure to a wet chemical composition to provide an etched layer, wherein the etched layer has a second dielectric constant, and wherein the wet chemical composition contributes from 0 to 40% of the second dielectric constant; contacting the at least one surface of the layer with a silicon-containing fluid; optionally removing a first portion of the silicon-containing fluid such that a second portion of the silicon-containing fluid remains in contact with the at least one surface of the layer; and exposing the at least one surface of the layer to UV radiation and thermal energy, wherein the layer has a third dielectric constant that is restored to a value that is at least 90% restored relative to the second dielectric constant.
摘要:
A stabilized cyclic alkene composition comprising one or more cyclic alkenes, and at least one stabilizer compound having the Formula (I), R1,R2,R3,R4,R5(C6)OH Formula (I) wherein R1 through R5 can each independently be H, OH, C1-C8 linear, branched, or cyclic alkyl, C1-C8 linear, branched, or cyclic alkoxy or substituted or unsubstituted aryl, and wherein the stabilizer compound is present in an amount greater than 200 ppm up to 20,000 ppm and has a boiling point lower than 265° C.A method for forming a layer of carbon-doped silicon oxide on a substrate, which uses the stabilized alkene composition and a silicon containing compound.
摘要:
A chemical vapor deposition method for producing a porous organosilica glass film comprising: introducing into a vacuum chamber gaseous reagents including at least one precursor selected from the group consisting of an organosilane and an organosiloxane, and a porogen that is distinct from the precursor, wherein the porogen is a C4 to C14 cyclic hydrocarbon compound having a non-branching structure and a degree of unsaturation equal to or less than 2; applying energy to the gaseous reagents in the vacuum chamber to induce reaction of the gaseous reagents to deposit a preliminary film on the substrate, wherein the preliminary film contains the porogen; and removing from the preliminary film substantially all of the labile organic material to provide the porous film with pores and a dielectric constant less than 2.6.
摘要:
A chemical vapor deposition method for producing a porous organosilica glass film comprising: introducing into a vacuum chamber gaseous reagents including at least one precursor selected from the group consisting of an organosilane and an organosiloxane, and a porogen that is distinct from the precursor, wherein the porogen is a C4 to C14 cyclic hydrocarbon compound having a non-branching structure and a degree of unsaturation equal to or less than 2; applying energy to the gaseous reagents in the vacuum chamber to induce reaction of the gaseous reagents to deposit a preliminary film on the substrate, wherein the preliminary film contains the porogen; and removing from the preliminary film substantially all of the labile organic material to provide the porous film with pores and a dielectric constant less than 2.6.
摘要:
A stabilized composition consists essentially of unsaturated hydrocarbon-based materials, and a stabilizer selected from the group consisting of a hydroxybenzophenone and a nitroxyl radical based stabilizer.A stabilized composition consists essentially of unsaturated hydrocarbon-based materials, at least one polar liquid and a stabilizer selected from the group consisting of a hydroxybenzophenone, a nitroxyl radical based stabilizer and a hydroquinone based stabilizer.A method for stabilizing unsaturated hydrocarbon-based precursor material against the polymerization comprises providing a stabilizer selected from the group consisting of a hydroxybenzophenone and a nitroxyl radical based stabilizer.A method for stabilizing a mixture of unsaturated hydrocarbon-based precursor material with at lease one polar liquid against the polymerization comprises adding to the mixture, a stabilizer selected from the group consisting of a hydroxybenzophenone and a nitroxyl radical based stabilizer.
摘要:
A method for preparing an interlayer dielectric to minimize damage to the interlayer's dielectric properties, the method comprising the steps of: depositing a layer of a silicon-containing dielectric material onto a substrate, wherein the layer has a first dielectric constant and wherein the layer has at least one surface; providing an etched pattern in the layer by a method that includes at least one etch process and exposure to a wet chemical composition to provide an etched layer, wherein the etched layer has a second dielectric constant, and wherein the wet chemical composition contributes from 0 to 40% of the second dielectric constant; contacting the at least one surface of the layer with a silicon-containing fluid; optionally removing a first portion of the silicon-containing fluid such that a second portion of the silicon-containing fluid remains in contact with the at least one surface of the layer; and exposing the at least one surface of the layer to UV radiation and thermal energy, wherein the layer has a third dielectric constant that is restored to a value that is at least 90% restored relative to the second dielectric constant.