Abstract:
An imaging member includes a surface layer comprising a fluoroelastomer-silicone composite formed from a reaction mixture comprising a fluoroelastomer, an oxyaminosilane, and an oxysilane-terminated compound. Methods of manufacturing the imaging member and processes for variable lithographic printing using the imaging member are also disclosed.
Abstract:
An imaging member includes a surface layer comprising a fluorosilicone and an infrared-absorbing filler. At least 75% of the siloxane units in the fluorosilicone are fluorinated. Methods of manufacturing the imaging member and processes for variably lithographic printing using the imaging member are also disclosed.
Abstract:
Various embodiments provide systems and methods for direct digital marking, wherein an electrostatic latent image or a surface charge contrast can be formed and developed at a development nip formed by a nano-enabled imaging member and a negatively-biased development subsystem.
Abstract:
Embodiments pertain to a novel imaging member, namely, an electrostatic latent image generating member that can generate an electrostatic latent image digitally without using a raster output scanner (ROS), photoreceptor and charger. The imaging member facilitates the charge injection process between an organic conjugated polymer and N,N′-diphenyl-N,N′bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′diamine charge transport layer.
Abstract:
Provided are electrostatic latent image generators, printing apparatuses including the electrostatic latent image generators, and methods of forming an electrostatic latent image. The electrostatic latent image generator can include a substrate and an array of pixels disposed over the substrate, wherein each pixel of the array of pixels can include a layer of one or more nano-carbon materials, and wherein each pixel of the array of pixels is electrically isolated and is individually addressable. The electrostatic latent image generator can also include a charge transport layer disposed over the array of pixels, wherein the charge transport layer can include a surface disposed opposite to the array of pixels, and wherein the charge transport layer is configured to transport holes provided by the one or more pixels to the surface.
Abstract:
In accordance with aspects of the present disclosure, a printhead assembly arranged to dispense ultraviolet curable ink or gel ink and method thereof is disclosed. The printhead assembly includes a plurality of functional plates stacked together; a first adhesive layer arranged between adjacent functional plates to provide bonding between the plates; and a second adhesive layer arranged between adjacent function plates to provide chemical resistance to the ultraviolet curable ink or the gel ink.
Abstract:
Various embodiments provide materials, apparatus, and methods for forming an image. Exemplary imaging apparatus can include one or more light sources configured to treat toner images after they are transferred on an image receiving substrate (e.g., a copy sheet). The toner images can be formed of an opto-thermal toner containing opto-thermal elements in a toner composition. The fuser subsystem may or may not be configured in the disclosed imaging apparatus.
Abstract:
An imaging member includes a surface layer comprising a fluoroelastomer-silicone composite formed from a reaction mixture comprising a fluoroelastomer, an oxyaminosilane, and an oxysilane-terminated compound. Methods of manufacturing the imaging member and processes for variable lithographic printing using the imaging member are also disclosed.
Abstract:
An apparatus for printing a latent image includes a rotary contact, a power supply, driving electronics and a plurality of TFT transistors configured as a TFT backplane. The rotary contact receives serially transmitted digital data signals from a controller and generates selection signals and digital pixel voltages. The rotary contact receives operating voltage signals from the controller. The power supply receives the operating voltage signals from the rotary contact and generates a low voltage signal, a ground signal and a high voltage signal. The driving electronics receive the low voltage signal, the ground signal, selection signals and the digital pixel voltages, and generates bias signals and pixel voltages. The TFT backplane receives the high voltage signal, the bias signals and the pixel voltages, and then drives the hole injection pixels to generate an electrostatic latent image in response to the bias signals and pixel voltages.