Abstract:
A method and apparatus for camouflaging an application specific integrated circuit (ASIC), wherein the ASIC comprises a plurality of interconnected functional logic is disclosed. The method adds functionally inert elements to the logical description or provides alternative definitions of standard logical cells to make it difficult for reverse engineering programs to be used to discover the circuit's function.
Abstract:
A technique for and structures for camouflaging an integrated circuit structure. The integrated circuit structure is formed by a plurality of layers of material having a controlled outline. A layer of conductive material having a controlled outline is disposed among said plurality of layers to provide artifact edges of the conductive material that resemble one type of transistor (operable vs. non-operable), when in fact another type of transistor was used.
Abstract:
A method and apparatus for camouflaging an application specific integrated circuit (ASIC), wherein the ASIC comprises a plurality of interconnected functional logic is disclosed. The method adds functionally inert elements to the logical description or provides alternative definitions of standard logical cells to make it difficult for reverse engineering programs to be used to discover the circuit's function. Additionally, post processing may be performed on GDS layers to provide a realistic fill of the empty space so as to resemble structural elements found in a functional circuit.
Abstract:
A method, apparatus, article of manufacture, and a memory structure for camouflaging an application specific integrated circuit (ASIC), wherein the ASIC comprises a plurality of interconnected functional logic cells. In one embodiment, the method comprises the steps of identifying at least one gap between the plurality of interconnected functional logic cells having no functional logic therein, placing one filler cell or combination of filler cells into the identified gap and defining a routing of the placed filler cells.
Abstract:
A technique for and structures for camouflaging an integrated circuit structure. The technique including forming active areas of a first conductivity type and LDD regions of a second conductivity type resulting in a transistor that is always non-operational when standard voltages are applied to the device.
Abstract:
A technique for and structures for camouflaging an integrated circuit structure. The integrated circuit structure is formed by a plurality of layers of material having a controlled outline. A layer of conductive material having a controlled outline is disposed among said plurality of layers to provide artifact edges of the conductive material that resemble one type of transistor (operable vs. non-operable), when in fact another type of transistor was used.
Abstract:
A method and apparatus for camouflaging an application specific integrated circuit (ASIC), wherein the ASIC comprises a plurality of interconnected functional logic is disclosed. The method adds functionally inert elements to the logical description or provides alternative definitions of standard logical cells to make it difficult for reverse engineering programs to be used to discover the circuit's function.
Abstract:
A method, apparatus, article of manufacture, and a memory structure for camouflaging an application specific integrated circuit (ASIC), wherein the ASIC comprises a plurality of interconnected functional logic cells. In one embodiment, the method comprises the steps of identifying at least one gap between the plurality of interconnected functional logic cells having no functional logic therein, placing one filler cell or combination of filler cells into the identified gap and defining a routing of the placed filler cells.
Abstract:
A technique for and structures for camouflaging an integrated circuit structure. The integrated circuit structure is formed having a well of a first conductivity type under the gate region being disposed adjacent to active regions of a first conductivity type. The well forming an electrical path between the active regions regardless of any reasonable voltage applied to the integrated circuit structure.
Abstract:
Technique and structures for camouflaging an integrated circuit structure. The integrated circuit structure is formed by a plurality of layers of material having controlled outlines and controlled thicknesses. A layer of dielectric material of a controlled thickness is disposed among said plurality of layers to thereby render the integrated circuit structure intentionally inoperable.