Abstract:
An electrically controlled switching device includes a support, a first contact coupled to the support, a second contact coupled to the support, an SMA element operably connected with the second contact, a sensor positioned on or adjacent to the SMA element, and a controller in communication with the sensor. The SMA element is configured to transform between a first shape and a different second shape responsive to an electrical pulse heating the SMA element to a transformation temperature. The sensor is configured to detect a detected temperature of the SMA element. The controller is configured to control the electrical pulse heating the SMA element. The controller receives signals from the sensor indicative of the detected temperature of the SMA element.
Abstract:
A method electrically connects by crimping electrical conductors in a connector for equipotential connection of a planar and flexible layer formed by the conductors, to metal components. The method includes positioning the electrical conductors in individual longitudinal and parallel cells which are formed between two planar walls of the connector, crimping the conductors crimped in a crimping zone by simultaneous transverse punching of at least one wall of the connector, and forming by the transverse punching at least one corresponding transverse groove line on the at least one connector wall and, by load transfer, on each of the conductors to electrically connect the conductors.
Abstract:
The protection device for providing protection against short-circuits upstream from an electrical power supply module having an inlet filter with at least one capacitor and an inductor and having a converter with components associated with a plurality of freewheel diodes includes at least one auxiliary winding and a dissipator element associated with the inlet filter, thereby making it possible to provide an inlet filter of small size without over dimensioning the freewheel diodes.
Abstract:
The invention relates to a method of measuring the temperature of a coiled component comprising the injection of a known DC current into a gauge wire (1) made of resistive material, the resistance of the gauge wire varying with temperature according to a known law, the measurement of potential difference between the terminals (7a, 7b) of said gauge wire, and a step of calculation transforming the potential difference into a mean temperature of the gauge wire, said gauge wire (1) being wound inside the coil, and arranged as a series of “outbound” turns (5) and a series of “inbound” turns (6) associated pairwise with a geometry and a position that are substantially equal. It also relates to a component made in order to be able to implement this method and the measurement device as a whole.
Abstract:
A coiled power device including a magnetic core including a first leg and a second leg which are parallel to each other, the device including a first coil and a second coil to generate mutual inductance between the coils, the first coil including a first winding of conducting wires around the first leg and a second winding of conducting wires around the second leg, the second coil including at least a third winding of conducting wires around the second leg and a fourth winding of conducting wires around the first leg, the first winding and the fourth winding covering the same portion of the first leg to limit leakage inductance of the coiled power device.
Abstract:
A three-phase/two-phase rotary transformer including a three-phase portion and a two-phase portion that are movable in rotation relative to each other about an axis A. The three-phase portion includes a first body made of ferromagnetic material and three-phase coils, the two-phase portion including a second body made of ferromagnetic material and two-phase coils. The second body defines a first annular slot of axis A and a second annular slot of axis A, the two-phase coils including a first toroidal coil of axis A in the first slot, a second toroidal coil of axis A in the first slot, a third toroidal coil of axis A in the second slot, and a fourth toroidal coil of axis A in the second slot, the first coil and the fourth coil being connected in series, the second coil and the third coil being connected in series.
Abstract:
The disclosed embodiments aim to improve upon existing multi stage generators for providing power to a load. In particular, embodiments of the invention include a regulator situated between the output of a pilot exciter and the main exciter of a multi stage generator system, the regulator arranged to limit the voltage available to a field current control element which sets the field current supplied to the main exciter.
Abstract:
The invention relates to an assistance device (17) for an electrical power generation system (11) of an aircraft, said system (11) comprising a generator (13), a regulator (14) and a contactor (15) comprising contacts and an actuator for opening/closing the contacts which is controlled by said regulator (14) and arranged between the generator (13) and a distribution architecture (12), the assistance device being characterized in that it is connected to at least one power source (18) which is separate from the generator (13) and the regulator (14), and in that it comprises means for closing the contactor which are suitable for connecting the power source (18) to the actuator (23) of the contactor (15) in order to provide the current necessary for closing said contactor (15).
Abstract:
An electrical power supply including an asynchronous machine, an arrangement for driving a rotor of the asynchronous machine in rotation by a rotor of an engine, and an electrical connection for powering electrical equipment by the rotor of the asynchronous machine. The asynchronous machine is configured to receive AC electrical power via a stator of the asynchronous machine, and it presents, over a predetermined range of drive speeds of the rotor of the asynchronous machine under drive by the rotor of the engine, efficiency in transferring electrical power from the stator to the rotor that is privileged relative to the efficiency with which rotary mechanical power is converted into electrical power.
Abstract:
A brush for a starter-generator includes a first carbon block, a second carbon block, a terminal lug, and a plurality of brush leads. Each carbon block has an outboard edge and an inboard edge. Each carbon block includes a front carbon wafer and a rear carbon wafer. Front brush leads connect the terminal lug with the front carbon wafers of the respective carbon blocks adjacent the inboard edges of the respective carbon blocks. Rear brush leads connect the terminal lug with the rear carbon wafers of the respective carbon blocks adjacent the outboard edge of the respective carbon blocks.