Abstract:
A separable and reconnectable connector for semiconductor devices is provided that is scalable for devices having very small contact pitch. Connectors of the present disclosure include signal pins shielded by pins electrically-coupled to ground. One or more signal pins in a contact array are electrically-shielded by at least one ground pin coupled to a ground plane. Embodiments thereby provide signal pins, either single-ended or a differential pair, usable to transmit signals with reduced noise or cross-talk and thus improved signal integrity. Embodiments further provide inner ground planes coupled to connector ground pins to shield pairs of differential signal pins without increasing the size of the connector. Inner grounding layers can be formed within isolation substrates incorporated into connector embodiments between adjacent pairs of signal pins. These buried ground layers provide additional crosstalk isolation in close proximity to signal pins, resulting in improved signal integrity in a significantly reduced space.
Abstract:
A separable and reconnectable connector for semiconductor devices is provided that is scalable for devices having very small contact pitch. Connectors of the present disclosure include signal pins shielded by pins electrically-coupled to ground. One or more signal pins in a contact array are electrically-shielded by at least one ground pin coupled to a ground plane. Embodiments thereby provide signal pins, either single-ended or a differential pair, usable to transmit signals with reduced noise or cross-talk and thus improved signal integrity. Embodiments further provide inner ground planes coupled to connector ground pins to shield pairs of differential signal pins without increasing the size of the connector. Inner grounding layers can be formed within isolation substrates incorporated into connector embodiments between adjacent pairs of signal pins. These buried ground layers provide additional crosstalk isolation in close proximity to signal pins, resulting in improved signal integrity in a significantly reduced space
Abstract:
A connector includes a cable tray configured to receive and retain a cable in a stable position and couple with a top cap configured to create an electrical connection with the cable as the top cap is manipulated in a predetermined manner while coupled with the cable tray. An upper surface of the cable tray is configured to receive the cable. The cable tray also includes a finger extending beyond the first end for some distance longitudinally. The finger includes a protrusion that protrudes to some extent in a transverse direction so that a cable-accommodating gap is defined between the protrusion and the first end. The protrusion is configured to bear against the cable and retain the cable in the stable position when the cable is inserted between the protrusion and the first end (before, during and/or after an electrical connection is established).
Abstract:
A connector for connecting to a magnetic coil wound onto a support is disclosed. The connector comprises a first resilient body formed of a conductive material and having a plurality of cutters disposed on a plurality of inner walls of the first resilient body. The first resilient body is inserted onto the support and held in an open position during insertion. The first resilient body is biased into a closed position. In the closed position, the plurality of cutters cut an insulating layer on the magnetic coil and the first resilient body retains the magnetic coil on the support while electrically connecting the magnetic coil and the support.
Abstract:
The present invention relates to an electrical household appliance comprising an electric motor with a stator having a core around which a coil is wrapped to be connected to a motor power socket by an electrical connection terminal. An electric motor is disclosed, the electric motor comprising a stator which contains a core wrapped with a coil therearound, an electrical connection terminal into which a mag mate terminal having at least one slit is inserted to be electrically connected to the coil through insertion of the coil into the slit.
Abstract:
A water blocking structure for an insulation-coated wire includes a heat-shrinkable tubular protective member that is closed at one end by a stopper and that accommodates an intermediate portion of an insulation-coated wire, and a resin material that is accommodated in the protective member and that penetrates the intermediate portion of the insulation-coated wire. Slit portions are formed in a coating of the insulation-coated wire within the protective member, the slit portions extending in a direction that crosses the axis of the insulation-coated wire on opposite sides of the intermediate portion with respect to a radial direction, and a water blocking agent penetrates the intermediate portion via these slit portions.
Abstract:
An electrical connector includes an insulative connector housing including a longitudinal bottom wall defining a plurality of contact openings for receiving a plurality of contacts, first and second side walls extending upwardly from the bottom wall at opposing sides thereof, first and second end walls extending upwardly from the bottom wall at opposing ends thereof, first and second pairs of latch openings at opposing ends of the bottom wall, and first and second protrusions extending upwardly from the bottom wall and disposed between respective first and second pairs of latch openings. Each latch opening extends through the bottom wall and through a side wall and is configured to allow a latch to eject a mating connector by moving within the opening. Each of the protrusions is configured to engage a corresponding opening in a latch of a mating connector cover or strain relief assembled to the electrical connector.
Abstract:
The invention relates to a contact-making apparatus for establishing electrical contact between a conductor or a plurality of conductors of a cable which is to be connected and a plug connector, comprising an insulating body which can be inserted into a chamber of a plug connector housing which is provided for this purpose, and at least one pressure piece which is suitable for receiving at least one conductor, wherein the at least one pressure piece is connected to the insulating body in a pivotable and articulated manner, and wherein the insulating body comprises at least one recess which in turn contains at least one insulation-displacement terminal, and wherein the pressure piece can be recessed in the at least one recess in the insulating body, and therefore the insulation-displacement terminal makes electrical contact with the end portion of the conductor.
Abstract:
Communications plugs are provided that include a plug housing. A plurality of plug contacts are mounted in a row at least partly within the plug housing. The plug contacts are arranged as differential pairs of plug contacts. Each of the differential pairs of plug contacts has a tip plug contact and a ring plug contact. A first capacitor is provided that is configured to inject crosstalk from a first of the tip plug contacts to a first of the ring plug contacts at a point in time that is after the point in time when a signal transmitted through the first of the tip plug contacts to a contact of a mating jack reaches the contact of the mating jack.
Abstract:
An electrical connector includes an insulative connector housing including a longitudinal bottom wall defining a plurality of contact openings for receiving a plurality of contacts, first and second side walls extending upwardly from the bottom wall at opposing sides thereof, first and second end walls extending upwardly from the bottom wall at opposing ends thereof, first and second pairs of latch openings at opposing ends of the bottom wall, and first and second protrusions extending upwardly from the bottom wall and disposed between respective first and second pairs of latch openings. Each latch opening extends through the bottom wall and through a side wall and is configured to allow a latch to eject a mating connector by moving within the opening. Each of the protrusions is configured to engage a corresponding opening in a latch of a mating connector cover or strain relief assembled to the electrical connector.