Abstract:
A wireless communication circuit includes a receiver to receive at least one of a beacon frame and a probe response frame from a first wireless communication apparatus belonging to a first communication group, at least one of the beacon frame and the probe response frame including first security information indicating a first encryption method. The circuit includes a transmitter to transmit an association request frame to the first wireless communication apparatus, the association request frame including second security information indicating a second encryption method which is supported by the wireless communication circuit, after a determination that the second encryption method overlaps with the first encryption method. The transmitter declines to associate with the first wireless communication apparatus if the first encryption method fails to overlap with the second encryption method. The transmitter transmits a data frame including a frame body after a reception of an association response frame.
Abstract:
In a communication system, a first wireless communication apparatuses belonging to a communication group receives a connection request frame including a notifying security level from a second communication apparatus outside of the communication group. The first communication apparatus stores a reference security level peculiar to the communication group, which is selected from security levels depending on one of encryption methods including non-encryption and encryption strengths. In the first communication apparatus, the notifying security level is compared with the reference level, and a response frame including one of a connect rejection and a connection permission is described, is generated and transferred to the second communication apparatus. The connect rejection represents a rejection of connection to the second communication apparatus and the connection permission represents a permission of connection to the second communication apparatus.
Abstract:
A communication device includes a receiver, a transmitter and an interruption module. The receiver receives an allocation signal indicating a first period usable by the communication device and a second period usable by a plurality of communication devices including the communication device. The transmitter transmits a transmission signal in the first period. If the transmission of the transmission signal is completed within the first period, the interruption module interrupts at least a part of power supply to the receiver in the second period. If the transmission of the transmission signal is not completed within the first period and directivity of radio waves used by a second communication device includes a direction of the communication device in a communication period allocated before the second period, the transmitter transmits the transmission signal in the second period.
Abstract:
A radio communication system includes a plurality of radio communication terminals, in which a first radio communication terminal stores, in a first field contained in a header of a radio communication packet, address information indicating at least one radio communication terminal to which the radio communication packet is directly transmitted, and a second terminal relays the radio communication packet with reference to the address information stored in the first field. The header of the radio communication packet includes a second field which stores address information indicating a final destination terminal and a third field which stores address information indicating the first terminal as a sending source.
Abstract:
According to one embodiment, a wireless communication apparatus includes a determination unit, a first setting unit, a second setting unit and a wireless unit. The determination unit determines whether a signal degradation degree is higher than a threshold value. The first setting unit sets first parameters relating to a first data rate and a first communication robustness. The second setting unit sets second parameters relating to a second data rate and a second communication robustness if an instruction signal is received and if the signal degradation degree is higher than the threshold value. The wireless unit communicates with a communication partner using one of the first parameters and the second parameters.
Abstract:
A communication device includes a first receiver, a second receiver, a communication module, and a controller. The first receiver receives an operation signal from a remote controller. The second receiver receives a radio signal with a specific frequency. A power consumption of the second receiver is less than that of the first receiver. The communication module is capable of transmitting the operation signal to a first communication device. The controller controls power supply to the first receiver and the communication module and starts power supply to the first receiver and the communication module if the second receiver receives the radio signal. The communication module turns to a standby state if the first receiver does not receive the operation signal after start of power supply to the first receiver.
Abstract:
A power feeding device includes an oscillator to generate a high frequency signal, a resonance frequency determining unit configured to determine a resonance frequency to be used for a wireless power transmission, a resonance frequency controller configured to generate a resonance parameter, a resonant circuit to generate electromagnetic inductance, and a communicating unit configured to notify a resonance frequency to the power receiving device before starting a wireless power transmission. A power receiving device includes a communicating unit configured to receive information of a resonance frequency to be used for a wireless power transmission, a resonance frequency controller configured to generate a resonance parameter, a resonant circuit to generate power, a load circuit to operate by the power, a switch to open and close a connection between the resonant circuit and the load circuit, and a determining unit configured to control the switch.
Abstract:
An apparatus includes a unit receiving a first-radio signal indicating a state in which transmission by a SDMA scheme is allowed, a unit determining whether a transmission state is a first state (the SDMA scheme is available), or a second state (the SDMA scheme is unavailable), a unit transmitting a radio signal using the SDMA scheme, when it is determined that the first state continues for the first-time period, and a unit setting a third-time period, when the first state fails to continue for the first-time period, the third-time period being obtained by subtracting, from the first-time period, a second-time period ranging from when carrier sense is started to when the transmission state is determined to be the second state, wherein when the first-radio signal is received after the third-time period is set, it is determined whether the first state continues for the third-time period.
Abstract:
In a radio communication apparatus having a plurality of transmitting and receiving functions that enable simultaneous signal transmission and reception, an arbitrary number of transmitting and receiving functions are assigned to another radio communication apparatus based on channel states.
Abstract:
A wireless base station which controls joining of a plurality of wireless terminals to a wireless network, stores a maximum joining possible terminal number which indicates a maximum number of the wireless terminals of each terminal type that can join the wireless network simultaneously, and which is set in advance for each one of a plurality of terminal types that classify the wireless terminals, and a currently joining terminal number which indicates a number of the wireless terminals of each terminal type that are currently joining the wireless network, for each one of the plurality of the terminal types. Then, the wireless base station judges whether the joining of one wireless terminal of one terminal type which sent a request message to the wireless network is permitted or not, according to the maximum joining possible terminal number for the one terminal type and the currently joining terminal number stored for the one terminal type.