Abstract:
A light reflection device is provided with a light source configured to emit irradiation light, a reflector configured to reflect the irradiation light emitted from the light source, a housing, and a holder attached to the housing to hold the reflector. The holder is configured to restrict a movement of the reflector and allows a size of the reflector to change in contrast with the holder. A mobile object is provided with the light reflection device, a screen on which an image is formed by the irradiation light reflected by the reflector, a front windshield configured to reflect the irradiation light diverged and projected through the screen, and an imaging optical system configured to project the irradiation light emitted from the screen toward the front windshield.
Abstract:
Provided is a light-emitting device that has a high emission efficiency, excellent stability and temperature properties, and that generates light having a high color rendering property sufficient for practical use. This semiconductor light-emitting device (1) comprises a semiconductor light-emitting element (2) that emits blue light, a green phosphor (14) that absorbs the blue light and emits green light, and an orange phosphor (13) that absorbs the blue light and emits orange light, and is characterized in that the orange phosphor is an Eu-activated α-SiAlON phosphor having an emission spectrum peak wavelength within a range of 595 to 620 nm.
Abstract:
A paper-made staple binds a sheet bundle subjected to folding processing by a folding blade and a folding roller. The paper-made staple includes a pair of leg portions inserted into the sheet bundle and then bent inward; and a connection portion that connects the leg portions in a staple longitudinal direction. The connection portion has, at an edge portion thereof, a cut in a direction crossing the longitudinal direction so as to correspond to a predetermined folding position of the sheet bundle for the purpose of facilitating the folding of the connection portion, and the cut is formed inward from the edge portion so as to have a substantially triangular shape and is provided on both edge portions of the connection portion of the paper-made staple.
Abstract:
A light source unit includes a light source, a light source support to hold the light source, a fixing member which is attached to the light source support and includes a through-hole through which beams of light emitted from the light source pass, a lens holder inserted into the through-hole and attached to the fixing member by an adhesive; and a collimating lens to collimate the beams of light from the light source, wherein attachment surfaces of the adhesive for the lens holder has a tilted attachment surface tilted relative to the optical axis of the collimating lens.
Abstract:
Provided is a light emitting device with effectively improved color rendering properties. A light emitting device 1 includes: a light source 2 that emits light having the maximum intensity at a predetermined wavelength; a first phosphor (yellow phosphor) 51 that absorbs the light emitted by the light source 2 and outputs fluorescent light having the maximum intensity at a first wavelength which is longer than the predetermined wavelength; and a second phosphor (red phosphor) 52 that absorbs the light emitted by the light source 2 and outputs fluorescent light having the maximum intensity at a second wavelength which is longer than the first wavelength. An absolute value of wavelength dependency of an optical absorption rate of the second phosphor 52 at the first wavelength is set to not more than 0.6%/nm. Accordingly, the color rendering properties of the light emitted by the light emitting device 1 can be effectively improved.
Abstract:
A light guide member for an object detection apparatus for detecting an object adhered on a light translucent member based on change of quantity of reflection light received from the light translucent member includes a detection face where light exits to the light translucent member and reflection light reflected from the light translucent member enters, the detection face including a detection area where a part of the reflection light to enter the detection unit passes through, and a non-detection area where remaining part of the reflection light not to enter the detection unit passes through; a first intervening member disposed on the detection face attachable to the light translucent member via the first intervening member; and a second intervening member disposed on the detection face attachable to the light translucent member via the second intervening member. The first intervening member has flexibility greater than flexibility of the second intervening member.
Abstract:
Provided is a light emitting device with effectively improved color rendering properties. A light emitting device 1 includes: a light source 2 that emits light having the maximum intensity at a predetermined wavelength; a first phosphor (yellow phosphor) 51 that absorbs the light emitted by the light source 2 and outputs fluorescent light having the maximum intensity at a first wavelength which is longer than the predetermined wavelength; and a second phosphor (red phosphor) 52 that absorbs the light emitted by the light source 2 and outputs fluorescent light having the maximum intensity at a second wavelength which is longer than the first wavelength. An absolute value of wavelength dependency of an optical absorption rate of the second phosphor 52 at the first wavelength is set to not more than 0.6%/nm. Accordingly, the color rendering properties of the light emitted by the light emitting device 1 can be effectively improved.
Abstract:
An optical beam scanner includes a light source, an optical scanner configured to scan a light beam irradiated from the light source, and an input optical system configured to direct the light beam irradiated from the light source to the optical scanner, wherein the optical scanner includes a rotating mirror configured to rotate around a rotational axis and reflect the light beam irradiated from the light source; the rotating mirror is rotated around the rotational axis so that the light beam is irradiated on differing positions of a mirror surface of the rotating mirror; and the mirror surface of the rotating mirror has a mirror surface inclining angle with respect to a direction parallel to the rotational axis that is arranged to gradually increase from a first side to a second side of the rotating mirror in a direction parallel to a plane perpendicular to the rotational axis.
Abstract:
An imaging device includes a welded part on a lens barrel side that is hardened after a contact portion of a lens barrel or a contact part on the lens barrel side is softened, where the contact portion of the lens barrel and the contact part on the lens barrel side are fixed, and a welded part on a light-receiving circuit side that is hardened after a contact portion of the light-receiving circuit or a contact part on a light-receiving circuit side is softened, where the contact portion of the light-receiving circuit and the contact part on the light-receiving circuit side are fixed.
Abstract:
An object detection apparatus includes an incident optical system, which includes light source units and a combining unit combining light beams emitted from the light source units; a deflection unit including rotating reflection parts that deflect the light beams to scan and be irradiated on a predetermined range of an object; an imaging unit forming an image based on the light from the predetermined range of the object; and an optical detection unit detecting the object based on the light received via the imaging unit. Further the combining unit combines the light beams such that each of the combined light beams passes a single light path when projected onto a predetermined plane, and each of the light paths exists outside a region of the deflection unit when projected onto the first plane.