Abstract:
A refrigerant cycle device for a vehicle includes a compressor which compresses and discharges refrigerant, a discharge capacity control portion which controls a discharge capacity of the compressor. The refrigerant cycle device further includes a noise determination portion which determines whether an audible noise other than a refrigerant passing noise is in a low noise state, and/or a load determination portion which determines whether an air-conditioning thermal load is in a high load state. The discharge capacity control portion performs a gradual activation control in which the discharge capacity of the compressor is set to be lower than that determined in a normal control, when the noise determination portion determines that the audible noise is in the low noise state, and/or when the load determination portion determines that the air-conditioning thermal load is in the high load state, at an activation time of the compressor.
Abstract:
A fuel cell system has a fuel cell, an air-refrigerant heat exchanger, and primary and secondary expansion valves. The air-refrigerant heat exchanger performs heat exchange between exhaust air discharged from the fuel cell and a refrigerant in a refrigeration cycle. The primary expansion valve reduces the pressure of the refrigerant at an upstream side of the air-refrigerant heat exchanger. The secondary expansion valve reduces the pressure of the refrigerant at a downstream side of the air-refrigerant heat exchanger. While the air-refrigerant heat exchanger performs the heat-exchange from the air to the refrigerant, the primary expansion valve controls a reduced magnitude of the pressure of the refrigerant so that a temperature of the refrigerant is set to a specified value within a range of 0° C. to 5° C., preferably set to 0° C., at which water component contained in the air does not freeze.
Abstract:
In a fluid heating apparatus, a heat protect temperature sensor indirectly detects temperature of fluid heated by an electric heater adjacent to the electric heater. Also, a heated fluid sensor detects the temperature of the fluid adjacent to a fluid inlet of a heat exchanger. When it is determined that the temperature difference between the detected temperatures exceeds a predetermined level, electric power supply to the electric heater is discontinued. Thus, boil-dry is restricted early with a simple means.
Abstract:
In a vehicle air-conditioning system, a supply of electric power to a first electric heater and a supply of electric power to a second electric heater are duty controlled at the same duty ratio in such a manner that the supply of the electric power to the second electric heater is phase shifted by one half of a period from the supply of the electric power to the first electric heater.
Abstract:
A fuel cell system has a fuel cell, an air-refrigerant heat exchanger, and primary and secondary expansion valves. The air-refrigerant heat exchanger performs heat exchange between exhaust air discharged from the fuel cell and a refrigerant in a refrigeration cycle. The primary expansion valve reduces the pressure of the refrigerant at an upstream side of the air-refrigerant heat exchanger. The secondary expansion valve reduces the pressure of the refrigerant at a downstream side of the air-refrigerant heat exchanger. While the air-refrigerant heat exchanger performs the heat-exchange from the air to the refrigerant, the primary expansion valve controls a reduced magnitude of the pressure of the refrigerant so that a temperature of the refrigerant is set to a specified value within a range of 0° C. to 5° C., preferably set to 0° C., at which water component contained in the air does not freeze.
Abstract:
A refrigeration cycle controls a second evaporator while a first evaporator is operating. The refrigeration cycle of the present invention makes a differential pressure between an inlet refrigerant pressure and an outlet refrigerant pressure of a second evaporator solenoid valve when starting or stopping the second evaporator during operation of the first evaporator smaller than the differential pressure when operating only the first evaporator, then opening or closing the second evaporator solenoid valve.
Abstract:
An electric heater apparatus for automobiles is disclosed. A sheathed heater (14a) constituting a heat generating member of a heater assembly (14) generates heat by power supplied from a main power supply for generating a DC high voltage through an inverter. A thermal fuse (15) has a temperature detecting element (15a) (low-melting alloy) adapted to fuse when a set temperature is reached. The temperature detecting element (15a) is connected to the power circuit of the sheathed heater (14a) through lead wires (15b, 15c). The thermal fuse (15) is arranged in such a position that the longitudinal direction of the temperature detecting element (15a) accommodated in the casing (17) is coincident with the longitudinal direction of the heater assembly 14, and mounted in surface-to-surface contact with the body (aluminum body (14c)) of the heater assembly (14). Also, the interior of the casing (17) is sealed with a material (such as cement or a silicon caulking material) higher in heat conductivity than air.
Abstract:
In an electrical load controller, a thermal fuse is blown at an abnormal heating of an electrical load, so that an electrical circuit of the electrical load is disconnected. The controller controls a work amount of the electrical load by intermittently controlling electrical power to be supplied thereto. The power supply to the electrical load is intermittently stopped even when the work amount of the electrical load is controlled at a maximum amount. Therefore, an arc, generated when the thermal fuse is blown, disappears while the power supply is stopped, so that the thermal fuse can be accurately operated.
Abstract:
In a vehicle air conditioner where air blown into a passenger compartment is heated in a heater core using cooling water for cooling a fuel cell system as a heating source, a flow amount of cooling water flowing into the heat core is controlled by a control valve based on a surplus heat quantity of the fuel cell system and a necessary heat quantity of the passenger compartment. Further, when the surplus heat quantity of the fuel cell system is smaller than the necessary heat quantity, an insufficient heat quantity is supplemented by a supplementary heater.
Abstract:
A refrigerant cycle device for a vehicle includes a compressor which compresses and discharges refrigerant, a discharge capacity control portion which controls a discharge capacity of the compressor. The refrigerant cycle device further includes a noise determination portion which determines whether an audible noise other than a refrigerant passing noise is in a low noise state, and/or a load determination portion which determines whether an air-conditioning thermal load is in a high load state. The discharge capacity control portion performs a gradual activation control in which the discharge capacity of the compressor is set to be lower than that determined in a normal control, when the noise determination portion determines that the audible noise is in the low noise state, and/or when the load determination portion determines that the air-conditioning thermal load is in the high load state, at an activation time of the compressor.