Abstract:
There is disclosed a semiconductor sensor for measuring the contact shear stress distribution between the socket of an above-knee (AK) prostheses and the soft tissue of an amputee's stump. The sensor is fabricated by the micro-electro-mechanical system (MEMS) technology, and its main sensing part is 2-X shaped with a flange structure. The sensor is prepared by anisotropic wet etching of bulk silicon in KOH solution and a square flange above the sensing diaphragm is formed through surface micromachining of deposited SiO2 thin film. This invention has the following characteristics: piezo-resistivity of the monolithic silicon will be utilized to convert shear deformation of the sensor into an electrical signal and a micro sensor which can measure the shear force vector acting on the sensing flange.
Abstract:
A method for manufacturing organic light-emitting diodes (OLEDs) is disclosed, by adding nitrogen (N2) into the material of a hole transport layer (HTL) and evaporating the nitrogen and the material of the hole transport layer while growing the hole transport layer, so as to dope nitrogen molecules into the hole transport layer. In the hole transport layer, the nitrogen molecules are impurities of higher energy level, and are used to catch holes while the holes transports and trap the holes in the hole transport layer, thereby obtaining an object of improving the luminance efficiency of the organic light-emitting diodes with lower cost.
Abstract:
The present invention relates to a new process of the cantilever structure in the micro-electro-mechanical system (MEMS), and more particularly, to a process that could overcome the contamination problem on the undesired areas during the thin-film growth. Their advantages include not only to substitute the complex technique with sacrificial layer, but also to increase the yield for its simple structure and to deal the sub-micron microelectromechanical system technology for the mature stage on the wet-etching skill.
Abstract:
A method for manufacturing organic light-emitting diodes (OLEDs) is disclosed, by adding nitrogen (N2) into the material of a hole transport layer (HTL) and evaporating the nitrogen and the material of the hole transport layer while growing the hole transport layer, so as to dope nitrogen molecules into the hole transport layer. In the hole transport layer, the nitrogen molecules are impurities of higher energy level, and are used to catch holes while the holes transports and trap the holes in the hole transport layer, thereby obtaining an object of improving the luminance efficiency of the organic light-emitting diodes with lower cost.