摘要:
Applicants have discovered that films of conductively doped GaInO.sub.3 grown on substrates by sputter deposition have conductivity comparable to conventional wide band-gap transparent conductors while exhibiting superior light transmission, particularly in the green and blue wavelength regions of the visible spectrum. Substrate temperatures ranged from 100.degree. C. to 550.degree. C. in an argon-oxygen ambient of total pressure 4 mTorr to 20 mTorr with an optimal oxygen partial pressure in the range 0.5 to 2 mTorr.
摘要:
Applicant has discovered that aliovalently doped zinc-indium-oxide where In is 40-75% of the metal elements can achieve electrical conductivity comparable to wide band-gap semiconductors presently in use while exhibiting enhanced transparency in both the visible and infrared. The material can be doped to resistivity of less than 1 milliohm-cm by small quantifies of aliovalent dopants, such as tetravalent atoms. It can be deposited on glass substrates in amorphous and polycrystalline films.
摘要:
In accordance with the invention, a thin layer of epitaxial silicon is grown at low temperatures at or below 300.degree. C. by the steps of providing a substrate, forming an oriented dielectric buffer layer on the substrate and growing epitaxial silicon on the buffer layer. Preferably the substrate has a glass surface and the oriented buffer layer is cubic ZrO.sub.2. The buffer layer is preferably oriented by bombarding it with a directed ion beam while the buffer layer is being deposited on the substrate. For example, a buffer layer of (100) cubic ZrO.sub.2 can be grown at a temperature as low as 300.degree. C. The oriented cubic ZrO.sub.2 is an excellent buffer for epitaxial silicon on glass due to a good match of lattice parameters with silicon and a good match of thermal expansion coefficients with glass. An oriented (100) silicon epitaxial film can then be grown on the epitaxial template provided by the buffer layer at a temperature as low as 250.degree. C. This low temperature process for producing epitaxial films offers multiple advantages: (1) reduced silicon interfacial defect densities and enlarged grain size permitting improved thin film transistor performance due to a lowered "off" current; (2) higher electron mobility permitting the fabrication of integrated displays; (3) lower temperature processing permitting the use of inexpensive glass substrates such as borosilicates; (4) sufficiently low temperature processing to permit the use of new lightweight substrates such as glass-coated polymeric materials (glass-coated plastics) which can substantially reduce the weight of displays and thus enhance the portability of portable computers, video telephones, and personal communicators; and (5) the use of new buffer layers such as ZrO.sub.2 which can block the diffusion of Na ions from the substrate.