Abstract:
The present invention relates to an adaptable input/output device. One embodiment of a hardware device for facilitating an interaction between a computing system and a user includes: an interaction surface for supporting the interaction, a single actuator capable of driving a first region of the interaction surface, and a first selective clamping mechanism capable of restricting movement of one or more second regions of the interaction surface that partly intersect the first region, wherein a displacement of one or more desired portions of the interaction surface is dynamically controllable.
Abstract:
An electroadhesive gripping device or system includes a plurality of electroadhesive gripping surfaces, each having electrode(s) and each configured to be placed against respective surface regions of a foreign object, such that one or more electroadhesive forces can be provided between the electroadhesive gripping surfaces and the foreign object. Such electroadhesive forces operating to hold the foreign object against the electroadhesive gripping surfaces while the foreign object is held or moved by the electroadhesive gripping system. The electroadhesive gripping surfaces can be arranged onto a plurality of continuous fingers, and various gripping surfaces on each finger can be coupled together and manipulated with respect to each other by an actuating component, such as a cable actuator. A variable voltage can be delivered to the electrodes to control the amount of electroadhesive force generated, such that only a portion of a foreign object is held or moved.
Abstract:
Described herein are compliant electroactive polymer transducers for use in acoustic applications. A compliant electroactive polymer transducer includes a compliant electroactive polymer at least two electrodes. For sound production, circuitry in electrical communication with the transducer electrodes is configured to apply a driving signal that causes the electroactive polymer to deflect in the acoustic range.
Abstract:
Described is a piston rod position-sensing system having a cylinder and piston rod arranged in the cylinder for movement with respect thereto. A magnetically hard layer is formed on the piston rod to provide a recording medium. The magnetically hard layer is made of a cobalt-phosphorous (Co—P)-based alloy. A magnetic pattern is recorded in the magnetically hard layer. A magnetic field sensor located in the cylinder senses the recorded magnetic pattern while the piston rod is moving with respect to the cylinder. Signals are generated in response to the sensed magnetic pattern for determining a position of the piston rod
Abstract:
The invention describes devices for controlling fluid flow, such as valves. The devices may include one or more electroactive polymer transducers with an electroactive polymer that deflects in response to an application of an electric field. The electroactive polymer may be in contact with a fluid where the deflection of the electroactive polymer may be used to change a characteristic of the fluid. Some of the characteristic of the fluid that may be changed include but are not limited to 1) a flow rate, 2) a flow direction, 3) a flow vorticity, 4) a flow momentum, 5) a flow mixing rate, 6) a flow turbulence rate, 7) a flow energy, 8) a flow thermodynamic property. The electroactive polymer may be a portion of a surface of a structure that is immersed in an external fluid flow, such as the surface of an airplane wing or the electroactive polymer may be a portion of a surface of a structure used in an internal flow, such as a bounding surface of a fluid conduit.
Abstract:
The invention describes devices for controlling fluid flow, such as valves. The devices may include one or more electroactive polymer transducers with an electroactive polymer that deflects in response to an application of an electric field. The electroactive polymer may be in contact with a fluid where the deflection of the electroactive polymer may be used to change a characteristic of the fluid. Some of the characteristic of the fluid that may be changed include but are not limited to 1) a flow rate, 2) a flow direction, 3) a flow vorticity, 4) a flow momentum, 5) a flow mixing rate, 6) a flow turbulence rate, 7) a flow energy, 8) a flow thermodynamic property. The electroactive polymer may be a portion of a surface of a structure that is immersed in an external fluid flow, such as the surface of an airplane wing or the electroactive polymer may be a portion of a surface of a structure used in an internal flow, such as a bounding surface of a fluid conduit.
Abstract:
Described are a system and method of recording piston rod position information in a magnetic layer on the piston rod. A piston rod moving with respect to a cylinder has a magnetically hard layer formed thereon to provide a recording medium. A magnetic pattern is recorded in the magnetically hard layer. A magnetic field sensor senses the recorded magnetic pattern while the piston rod is moving with respect to the cylinder and generates signals in response to the magnetic pattern that are used to determine an instantaneous position of the piston rod.
Abstract:
Intraarterial blood pressure is measured noninvasively by an electromechanical transducer (22) that includes an array of transducer elements (22-1 through 22-19). The transducer extends across an artery (24) with transducer elements at the ends of the array extending beyond opposite edges of the artery. A set of diastolic and/or systolic pressure and pulse amplitude values is obtained from the outputs from the transducer elements, which values are stored in computer (62). Information concerning the subject related to the diameter of the underlying artery including, for example, the subject's age, weight, arm and wrist diameter also is entered into computer (62) through keyboard (64), from which information an estimation of the diameter of the underlying artery is obtained. Using the set of pulse amplitude values, a transducer element at the center of a search area located substantially at the center of the artery is identified. A center of gravity, a two humps and/or a curve fitting method may be used to identify the transducer element at the center of the search area. A group of transducer elements that overlies the artery of estimated diameter then is identified. Using outputs from only said group of transducer elements, one transducer element having a local minimum of one of the diastolic and systolic pressures, relative to the transducer at the center of the search area, is identified, which transducer element is selected for monitoring blood pressure.
Abstract:
In a capacitance type displacement measuring instrument, wherein a change in electric capacitance between electrodes due to a relative displacement between two members movable relative to each other is detected on the basis of a change in phase of a detection signal, and a relative displacement between the two members is measured from the change in phase, square waveform signals are applied in inversed phase to two transmitting electrodes provided on one of the members and signals induced on two wave pattern electrodes provided on the other of the members are received by receiving electrodes provided on the first of the members. Outputs from the receiving electrodes are successively taken in by a multiplexer, and then the amplitude-modulated square wave signals, outputted from the multiplexer, are demodulated. A phase detector measures the phase of the demodulated waveform, thereby measuring the relative displacement on the basis of change in phase.
Abstract:
An electroadhesive gripping device or system includes a plurality of electroadhesive gripping surfaces, each having electrode(s) and each configured to be placed against respective surface regions of a foreign object, such that one or more electroadhesive forces can be provided between the electroadhesive gripping surfaces and the foreign object. Such electroadhesive forces operating to hold the foreign object against the electroadhesive gripping surfaces while the foreign object is held or moved by the electroadhesive gripping system. The electroadhesive gripping surfaces can be arranged onto a plurality of continuous fingers, and various gripping surfaces on each finger can be coupled together and manipulated with respect to each other by an actuating component, such as a cable actuator. A variable voltage can be delivered to the electrodes to control the amount of electroadhesive force generated, such that only a portion of a foreign object is held or moved.