Abstract:
A micromachined structure, comprises a substrate and a cavity in the substrate. The micromachined structure comprises a membrane layer disposed over the substrate and spanning the cavity.
Abstract:
A method of determining adhesion quality and apparatus embodying the method are disclosed. The apparatus includes a substrate, a seed layer, and a resonator. The substrate defines a cavity and has a doped portion proximal to the cavity. The seed layer is disposed above the cavity. The resonator includes a bottom electrode on the seed layer, a piezoelectric portion on the bottom electrode, and a top electrode on the piezoelectric portion. To test the quality of adhesion of the seed layer to the substrate, one or more electrical property is measured between the doped portion and the bottom electrode and compared to a threshold value.
Abstract:
In accordance with an illustrative embodiment, a method of fabricating a transducer is described. The method comprises providing a transducer over a first surface of a substrate, wherein the substrate comprises a thickness. The method further comprises patterning a mask over a second surface. The mask comprises an opening for forming a scribe etch. The method comprises etching through the opening in the mask and into but not through the thickness of the substrate to provide the scribe etch.
Abstract:
An acoustic device includes a transducer formed on a first surface of a substrate and an acoustic horn formed in the substrate by a dry-etching process through an opposing second surface of the substrate. The acoustic horn is positioned to amplify sound waves from the transducer and defines a non-linear cross-sectional profile.
Abstract:
An apparatus comprises a substrate and transducers disposed over the substrate, each of the transducers comprising a different resonance frequency. A transducer device comprises circuitry configured to transmit signals, or to receive signals, or both. The transducer device also comprises a transducer block comprising a plurality of piezoelectric ultrasonic transducers (PMUT), wherein each of the PMUTs; and an interconnect configured to provide signals from the transducer block to the circuitry and to provide signals from the circuitry to the transducer block.
Abstract:
An acoustic device includes a transducer formed on a first surface of a substrate and an acoustic horn formed in the substrate by a dry-etching process through an opposing second surface of the substrate. The acoustic horn is positioned to amplify sound waves from the transducer and defines a non-linear cross-sectional profile.
Abstract:
A semiconductor package comprises: a substrate comprising a semiconductor device; a cap comprising a seal ring disposed over a surface of the cap; and a gap between the substrate and the surface of the cap. The seal ring comprises a tread comprising at least two columns.
Abstract:
An acoustic device includes a transducer formed on a first surface of a substrate and an acoustic horn formed in the substrate by a dry-etching process through an opposing second surface of the substrate. The acoustic horn is positioned to amplify sound waves from the transducer and defines a non-linear cross-sectional profile.
Abstract:
A micromachined structure, comprises a substrate and a cavity in the substrate. The micromachined structure comprises a membrane layer disposed over the substrate and spanning the cavity.
Abstract:
A method of determining adhesion quality and apparatus embodying the method are disclosed. The apparatus includes a substrate, a seed layer, and a resonator. The substrate defines a cavity and has a doped portion proximal to the cavity. The seed layer is disposed above the cavity. The resonator includes a bottom electrode on the seed layer, a piezoelectric portion on the bottom electrode, and a top electrode on the piezoelectric portion. To test the quality of adhesion of the seed layer to the substrate, one or more electrical property is measured between the doped portion and the bottom electrode and compared to a threshold value.