Abstract:
An improved amphiphilic diol is prepared with a controlled type and amount of alkylene glycol, catalyst, hydrophobic and hydrophilic diol with diisocyanate and water. Critical selection of the type, molecular weight and ratios of hydrophilic to hydrophobic diol, isocyanate to hydroxyl groups, average molecular weight of the diol component, the amount of water in the reaction mixture produces a polyuretheane having high slip, Shore A Hardness values, wet tensile strength and tear strength. This invention also includes uses of the polyurethane in catheters, shaving products, synthetic valves, veins and arteries, stents, ports, shunts and coatings. Preferably, the polyurethane is used in combination with a filler for application to rubber gloves. In addition, dispersions, lotions, gels and solutions can be formed of the polyurethane.
Abstract:
An improved polyurethane is prepared by reacting a diol component and an organic diisocyanate with critical selection of the amount of water in the reaction mixture and the diol component. The diol component is a long chain polyoxyethylene glycol optionally mixed with a low molecular weight polyoxyethylene glycol. A tough gel can be formed by mixing the polyurethane in a diol or triol and water solution. The tough gel can be used in burn and wound dressings, electroconductive pads, high slip materials and surgical implants. An optically clear gel can also be formed. Solutions and emulsions can be formed of the polymer and can be combined with fillers to form face creams and antiperspirants. A film can cover one side of the gel for burn and wound applications. The gel can be used in squeeze tubes and in spray cans in burn wound care dressings and industrial applications and in bags and containers for use in plastic surgery implants.
Abstract:
An improved polyurethane is prepared by reacting a diol component and an organic diisocyanate with critical selection of the amount of water in the reaction mixture and the diol component. The diol component is a long chain polyoxyethylene glycol optionally mixed with a low molecular weight polyoxyethylene glycol. A tough gel can be formed by mixing the polyurethane in a diol or triol and water solution. The tough gel can be used in burn and wound dressings, electroconductive pads, high slip materials and surgical implants. An optically clear gel can also be formed. Solutions and emulsions can be formed of the polymer and can be combined with fillers to form face creams and antiperspirants. A film can cover one side of the gel for burn and wound applications. The gel can be used in squeeze tubes and in spray cans in burn wound care dressings and industrial applications and in bags and containers for use in plastic surgery implants.
Abstract:
An improved amphiphilic diol is prepared with a controlled type and amount of alkylene glycol, hydrophobic and hydrophilic diol with diisocyanate and water. Critical selection of the type, molecular weight and ratios of hydrophilic to hydrophobic diol, isocyanate to hydroxyl groups, average molecular weight of the diol component, the amount of water in the reaction mixture produces a polyuretheane having high slip, Shore A Hardness values, wet tensile strength and tear strength. This invention also includes uses of the polyurethane in catheters, shaving products, synthetic valves, veins and arteries, stents, ports, shunts and coatings. Preferably, the polyurethane is used in combination with a filler for application to rubber gloves. In addition, dispersions, lotions, gels and solutions can be formed of the polyurethane.
Abstract:
An improved polyurethane is prepared by reacting a diol component and an organic diisocyanate with critical selection of the amount of water in the reaction mixture and the diol component. The diol component is a long chain polyoxyethylene glycol optionally mixed with a low molecular weight polyoxyethylene glycol. A tough gel can be formed by mixing the polyurethane in a diol or triol and water solution. The tough gel can be used in burn and wound dressings, electroconductive pads, high slip materials and surgical implants. An optically clear gel can also be formed. Solutions and emulsions can be formed of the polymer and can be combined with fillers to form face creams and antiperspirants. A film can cover one side of the gel for burn and wound applications. The gel can be used in squeeze tubes and in spray cans in burn wound care dressings and industrial applications and in bags and containers for use in plastic surgery implants.