摘要:
A negative-working lithographic printing plate precursor can be imaged with infrared radiation and processed in a single step using a single processing solution having a pH of from about 3 to 11. The precursor has a primary polymeric binder that comprises recurring units derived from one or more N-alkoxymethyl(meth)acrylamides, provided that such recurring units are present in the primary polymeric binder in an amount of at least 10% based on the total dry primary polymeric binder weight. In addition, the primary polymeric binder is present in an amount of from about 12 to about 70% based on total imageable layer dry weight. The imaged precursor can be processed off-press or on-press.
摘要:
A stable wetting concentrate includes octyl or dodecyl pyrrolidone, an ethoxylated alcohol, and a compatabilizing agent for dilution of the concentrate with water, suitably a polar material, such as an anionic emulsifier, or polyol, which prevents separation of the two base components in water, and, optionally, water, provides a stable wetting composition upon dilution with water, which exhibit superior wetting and spreading properties.
摘要:
Positive-working thermally imageable elements, useful as printing plate precursors and having reduced ablation when thermally imaged, and methods for their preparation are disclosed. In one aspect, the elements contain a hydrophilic substrate, an underlayer, a barrier layer, and a top layer. The underlayer comprises a photothermal conversion material.
摘要:
A thermally imageable element, useful as a lithographic printing plate precursor is disclosed. The element comprises a hydrophilic substrate; an underlayer comprising a first polymeric material; and an ink-receptive top layer comprising a second polymeric material. Preferably, the top layer comprises a compound that functions as a solubility-suppressing component. The solubility-suppressing component may be a separate dissolution inhibitor compound and/or the second polymeric material may also function as a solubility-suppressing component. On thermal exposure the exposed regions of the top layer becomes more readily soluble in an aqueous developer, allowing the developer to remove the top layer and reveal the surface of the hydrophilic substrate. The lithographic printing plate thus formed has excellent properties, including the absence of sludging of the developer.
摘要:
An infrared radiation-sensitive positive-working imageable element has a substrate and single imageable layer that includes a first polymeric binder having urethane or urea moieties in its backbone. The first polymeric binder is also insoluble in water and soluble in a weakly alkaline solution. This imageable element can be imaged and processed using weakly alkaline processing solutions that are free of silicates and metasilicates, which processing solutions may also be used to “gum” the imaged and developed printing surface.
摘要:
A fragrance delivery system comprises a suspension concentrate including a suspending matrix and a fragrance material which system can be diluted with water to form a use composition such as a body wash formulation.
摘要:
Positive-working imageable elements comprise a radiation absorbing compound and inner and outer layers on a substrate having a hydrophilic surface. The inner layer comprises a specific polymeric binder represented by Structure (I): -(A)w-(B)x-(C)y-(D)z- (I) wherein A represents recurring units derived from one or more N-alkoxymethyl (alkyl)acrylamides or alkoxymethyl (alkyl)acrylates, B represents recurring units derived from one or more ethylenically unsaturated polymerizable monomers having a pendant cyano group, C represents recurring units derived from one or more ethylenically unsaturated polymerizable monomers having one or more carboxy, sulfonic acid, or phosphate groups, D represents recurring units derived from one or more ethylenically unsaturated polymerizable monomers other than those represented by A, B, and C, w is from about 3 to about 80 weight %, x is from about 10 to about 85 weight %, y is from about 2 to about 80 weight %, and z is from about 10 to about 85 weight %. The use of this polymeric binder provides improved post-development bakeability chemical solvent resistance and desired digital speed.
摘要:
An infrared radiation-sensitive positive-working imageable element has a substrate and single imageable layer that includes a first polymeric binder having urethane or urea moieties in its backbone. The first polymeric binder is also insoluble in water and soluble in a weakly alkaline solution. This imageable element can be imaged and processed using weakly alkaline processing solutions that are free of silicates and metasilicates, which processing solutions may also be used to “gum” the imaged and developed printing surface.
摘要:
What is described herein is a synergistic matrix composite for making a stable microemulsion in water of an active ingredient comprising a first matrix composition including by wt. (a) 5-30% of a C8-C18 N-alkyl pyrrolidone, (b) optionally, 5-60% of a water insoluble organic solvent soluble therein, (c) 30-70% of a non-ionic emulsifier, and (d) 1-15% of an EO/PO/EO copolymer, and, (e) optionally, 1-5% of a surface active buffering agent, e.g. a branched alkyl ethoxylated phosphate ester, a second matrix composition comprising a polar polymeric material, e.g. polyethylene glycol, and/or a neutralized derivatized vegetable oil, e.g. maleated linseed oil, which composite is capable of loading a higher amount of said active than either composition alone.
摘要:
Both single-layer and multilayer imageable elements have a substrate and at least one imageable layer. The elements can be used to prepare either negative- or positive-working imaged elements, for example as lithographic printing plates. The imageable elements also include a radiation absorbing compound and a solvent-resistant polymer comprising pendant phosphoric acid groups, pendant adamantyl groups, or both. When this polymer comprises pendant adamantyl groups, they are connected to the polymer backbone through a urea or urethane group. The imageable elements have improved chemical resistance and thermal bakeability from the presence of the unique solvent-resistant polymer.