Abstract:
Embodiments of a semiconductor device having storage nodes include an interlayer insulating layer disposed on a semiconductor substrate; a conductive pad disposed in the interlayer insulating layer to contact with a predetermined portion of the substrate, an upper portion of the conductive pad protruding above the interlayer insulating layer; an etch stop layer disposed on the conductive pad and the interlayer insulating layer; and storage nodes penetrating the etch stop layer and disposed on the conductive pad. A penetration path of wet etchant is completely blocked during the wet etch process that removes the mold oxide layer. Therefore, inadvertent etching of the insulating layer due to penetration of wet etchant is prevented, resulting in a stronger, more stable, storage node structure.
Abstract:
Embodiments of a semiconductor device having storage nodes include an interlayer insulating layer disposed on a semiconductor substrate; a conductive pad disposed in the interlayer insulating layer to contact with a predetermined portion of the substrate, an upper portion of the conductive pad protruding above the interlayer insulating layer; an etch stop layer disposed on the conductive pad and the interlayer insulating layer; and storage nodes penetrating the etch stop layer and disposed on the conductive pad. A penetration path of wet etchant is completely blocked during the wet etch process that removes the mold oxide layer. Therefore, inadvertent etching of the insulating layer due to penetration of wet etchant is prevented, resulting in a stronger, more stable, storage node structure.
Abstract:
In a semiconductor memory device having a novel structure of a wiring layer and a large capacitance capacitor and the manufacturing method therefor, on the transistor formed on the semiconductor substrate, a first conductive layer is formed extending along with the gate electrode of the transistor and connecting with the gate electrode, a storage electrode of a capacitor is formed on the first conductive layer by interposing the insulation film between the first conductive layer and the source region of the transistor, and a second conductive layer is formed in connection with the first conductive layer at a portion between memory cell array and the peripheral circuit region. Storage electrodes can be made thicker without affecting to the step-difference between memory cells and the peripheral circuit region, so that a more reliable semiconductor memory device with a capacitor having a larger capacitance can be realized.
Abstract:
In an embodiment a method of forming self-aligned contacts in a semiconductor memory device includes: forming conductive stacks of conductive layers on a semiconductor substrate; forming insulating spacer layers on sidewalls of the conductive stacks; forming an insulating layer; forming a capping insulating layer covering portions of the insulating layer; and forming conductive pads that fill the contact holes to contact the semiconductor substrate. The capping insulating layer has a function of a buffer, so an etched amount of mask layers insulating the conductive layers is minimized, and a probability of a short circuit between capacitor electrodes and the conductive stacks is greatly reduced.
Abstract:
A conductive planarization layer, preferably a doped polysilicon layer, is used as a planarization layer for forming a conductive interconnect, such as a memory device bit line, thereon. Etching of the doped polysilicon planarization layer may be accurately controlled to form a planarized layer of controlled thickness, without requiring high temperature reflow heating of boro-phospo-silicate glass which can degrade transistor parameters. In particular, an insulating layer is formed on spaced apart source and drain regions and on the gate therebetween. A doped polysilicon layer is formed on the insulating layer. The doped polysilicon layer is planarized. A contact hole is formed in the insulating layer and in the doped polysilicon layer, to thereby expose the source or drain region. A conductive interconnect is then formed in the contact hole and on the gate.
Abstract:
A method for manufacturing a capacitor structure of a highly integrated semiconductor memory device. A first conductive layer is formed on a semiconductor substrate, and a first pattern is formed on the first conductive layer. A first material layer is formed on the resultant structure whereon the first pattern is formed, and the first material layer is etched anisotropically, to thereby form a spacer on the side of the first pattern. After etching the first conductive layer using the spacer as an etch-mask, the first pattern is removed. A second conductive layer is formed on the resultant structure and etched anisotropically. The spacer is removed, to thereby form a storage electrode of a capacitor. The distance between neighboring capacitors can be minimized to a value smaller than the limitation imposed by the lithographic technique, to thereby maximize the area of the capacitor.
Abstract:
A method of forming an integrated circuit device can include forming a plurality of fuse wires on an integrated circuit substrate, and forming an insulating layer on the integrated circuit substrate and on the plurality of fuse wires so that the fuse wires are between the integrated circuit substrate and the insulating layer. A plurality of fuse cutting holes can be formed in the insulating layer wherein each of the fuse cutting holes exposes a target spot on a respective one of the fuse wires, and a cross-sectional area of the fuse wires can be reduced at the exposed target spots. Related structures are also discussed.
Abstract:
In a semiconductor memory device having a novel structure of a wiring layer and a large capacitance capacitor and the manufacturing method therefor, on the transistor formed on the semiconductor substrate, a first conductive layer is formed extending along with the gate electrode of the transistor and connecting with the gate electrode, a storage electrode of a capacitor is formed on the first conductive layer by interposing the insulation film between the first conductive layer and the source region of the transistor, and a second conductive layer is formed in connection with the first conductive layer at a portion between memory cell array and the peripheral circuit region. Storage electrodes can be made thicker without affecting to the step-difference between memory cells and the peripheral circuit region, so that a more reliable semiconductor memory device with a capacitor having a larger capacitance can be realized.