Abstract:
The present invention relates to methods for treating a tumor, including a metastatic tumor, with TLR9 agonist in combination with an immune checkpoint inhibitor therapy.
Abstract:
The present invention relates to methods for treating a tumor, including a metastatic tumor, with TLR9 agonist in combination with an immune checkpoint inhibitor therapy.
Abstract:
The present invention relates to methods for treating a tumor, including a metastatic tumor, with TLR9 agonist in combination with an immune checkpoint inhibitor therapy.
Abstract:
The present invention is directed to compounds, compositions, and methods useful for modulating PD1, PDL1, IDO1, LAG3, TIM3, CTLA4, IDO2, CEACAM1, OX40, and/or OX40L mRNA or protein expression using gene silencing compounds comprising two or more single stranded antisense oligonucleotides that are linked through their 5′-ends to allow the presence of two or more accessible 3′-ends.
Abstract:
The invention provides novel immune regulatory oligonucleotides (IRO) as antagonist of TLRs and methods of use thereof. These IROs have unique sequences that inhibit or suppress TLR-mediated signaling in response to a TLR ligand or TLR agonist. The methods may have use in the prevention and treatment of cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, infectious disease, skin disorders, allergy, asthma or a disease caused by a pathogen.
Abstract:
The present invention is directed to compounds, compositions, and methods useful for modulating DUX4 mRNA or protein expression using gene silencing compounds comprising two or more single stranded antisense oligonucleotides that are linked through their 5′-ends to allow the presence of two or more accessible 3′-ends.
Abstract:
The inventors have examined the means for providing more efficacious miRNA blocking compounds. The inventors have discovered new structural features that surprisingly improve the efficacy of miRNA blocking molecules. These features include the presence of multiple 3′ ends and a linker at the 5′ ends. Surprisingly, these features improve the efficacy of the gene expression blocking compounds in a manner that decreases the compound's biologic instability. Even more surprisingly, this effect has been found to be applicable to both DNA and RNA oligonucleotide-based compounds and to have application in traditional antisense and RNAi technology.
Abstract:
The present disclosure relates to methods for treating cancer in patients having low expression of MHC Class I genes, and in patients having increased serum levels of PD-L2 by administration of a TLR9 agonist.
Abstract:
The invention provides novel immune regulatory oligonucleotides (IRO) as antagonist of TLRs and methods of use thereof. These IROs have unique sequences that inhibit or suppress TLR-mediated signaling in response to a TLR ligand or TLR agonist. The methods may have use in the prevention and treatment of cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, infectious disease, skin disorders, allergy, asthma or a disease caused by a pathogen.
Abstract:
The invention provides novel immune regulatory oligonucleotides (IRO) as antagonist of TLRs and methods of use thereof. These IROs have unique sequences that inhibit or suppress TLR-mediated signaling in response to a TLR ligand or TLR agonist. The methods may have use in the prevention and treatment of cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, infectious disease, skin disorders, allergy, asthma or a disease caused by a pathogen.