Abstract:
A radio frequency identification (“RFID”) antenna structure such as may be found on a tag, label or inlay for use with consumer products that has a conductive surface. The RFID structure of the present invention can be attached to the conductive surface without significantly modifying the performance of the RFID device. The RFID device has first and second portions, with the first portion having a first antenna pattern and the second portion including an elongate section for attachment to the consumer item.
Abstract:
A wireless communication device coupled to a wave antenna that provides greater increased durability and impedance matching. The wave antenna is a conductor that is bent in alternating sections to form peaks and valleys. The wireless communication device is coupled to the wave antenna to provide wireless communication with other communication devices, such as an interrogation reader. The wireless communication device and wave antenna may be placed on objects, goods, or other articles of manufacture that are subject to forces such that the wave antenna may be stretched or compressed during the manufacture and/or use of such object, good or article of manufacture. The wave antenna, because of its bent structure, is capable of stretching and compressing more easily than other structures, reducing the wireless communication device's susceptibility to damage or breaks that might render the wireless communication device coupled to the wave antenna unable to properly communicate information wirelessly.
Abstract:
A label includes a first portion that is printable with optically readable information and a detachable second portion that has an RFID tag that can be encoded with corresponding RFID information. The printable portion and the RFID portion can thus be printed and encoded, respectively, with information for the same container or object. Both portions can then be kept together until the label is ready to be applied. This greatly reduces the chances of applying mismatched optical and RFID labels.
Abstract:
A wireless communication device coupled to a wave antenna that provides greater increased durability and impedance matching. The wave antenna is a conductor that is bent in alternating sections to form peaks and valleys. The wireless communication device is coupled to the wave antenna to provide wireless communication with other communication devices, such as an interrogation reader. The wireless communication device and wave antenna may be placed on objects, goods, or other articles of manufacture that are subject to forces such that the wave antenna may be stretched or compressed during the manufacture and/or use of such object, good or article of manufacture. The wave antenna, because of its bent structure, is capable of stretching and compressing more easily than other structures, reducing the wireless communication device's susceptibility to damage or breaks that might render the wireless communication device coupled to the wave antenna unable to properly communicate information wirelessly.
Abstract:
An RFID tag or label or device includes an RFID chip and an antenna. The antenna is manufactured by weakening a portion of a foil material, which weakened portion may be in a tessellating pattern. The foil material is then placed in contact with adhesive on a substrate. The foil material and substrate are separated, so as to retain on the substrate the portion of the foil material in contact with the adhesive. The foil material remaining on the substrate defines an antenna, which may subsequently be electrically connected to an RFID chip to provide an RFID tag or label or device.
Abstract:
A portable radio-frequency repeater includes a housing and a transceiver. The transceiver is disposed at least partially within the housing and configured to alternatively operate in a transmitting mode and a sleep mode. The transceiver includes an antenna and a control unit. The control unit is in electrical communication with the antenna. When the transceiver operates in the transmitting mode, the control unit is configured to receive an RFID signal from the antenna, convert the RFID signal into a converted RFID signal, and transmit the converted RFD signal to the antenna. When the transceiver operates in the sleep mode, the control unit is configured to detect an interrogation signal from the antenna and not to transmit any converted RFID signal to the antenna.
Abstract:
A distributed point of sale, electronic article surveillance, and product information system. The system can include a central database and at least one integrated POS/EAS/information terminal adapted to communicate with NFC-enabled devices, RFID and EAS tags, and the database, wherein, when a customer places an NFC-enabled device and a product having an RFID and EAS tag and proximate the terminal, the terminal facilitates a transaction for purchasing the product. The terminal can include a processor, an NFC transceiver, a UHF RFID reader, and a Bluetooth transceiver. The transaction for purchasing the product can be performed via the NFC-enabled device.
Abstract translation:分销销售点,电子商品监控和产品信息系统。 该系统可以包括中央数据库和至少一个适于与启用NFC的设备,RFID和EAS标签以及数据库通信的集成POS / EAS /信息终端,其中,当客户放置支持NFC的设备和产品 具有RFID和EAS标签并且靠近终端,终端便于用于购买产品的交易。 终端可以包括处理器,NFC收发器,UHF RFID读取器和蓝牙收发器。 购买产品的交易可以通过启用NFC的设备执行。
Abstract:
A RFID device configured to drive a display element. The RFID device may have a reader capable of sending and receiving radio frequency signals and a RFID tag in communication with the RFID reader. The RFID tag may have an antenna, a chip having a radio frequency detector, a backscatter modulator, a logic block and a multiplexer. The RFID device may also have a display in communication with the multiplexer of the chip.
Abstract:
An RFID-based analyte sensor is provided with an antenna adapted to receive energy from an RF field and produce a signal. A sensing material is electrically connected to the antenna and has an electrical property which varies in the presence of an analyte. An energy storage device is also electrically connected to the antenna and is adapted to receive and store energy from the antenna and selectively discharge the stored energy. An initializing element is electrically connected to the energy storage device and is energized by the stored energy discharged by the energy storage device. When the initializing element is energized, it operates to reduce the analyte content of at least a portion of the sensing material, effectively initializing the sensing material.
Abstract:
A wireless communication device coupled to a wave antenna that provides greater increased durability and impedance matching. The wave antenna is a conductor that is bent in alternating sections to form peaks and valleys. The wireless communication device is coupled to the wave antenna to provide wireless communication with other communication devices, such as an interrogation reader. The wireless communication device and wave antenna may be placed on objects, goods, or other articles of manufacture that are subject to forces such that the wave antenna may be stretched or compressed during the manufacture and/or use of such object, good or article of manufacture. The wave antenna, because of its bent structure, is capable of stretching and compressing more easily than other structures, reducing the wireless communication device's susceptibility to damage or breaks that might render the wireless communication device coupled to the wave antenna unable to properly communicate information wirelessly.