摘要:
The present invention provides a membrane electrode assembly that enhances the reliability, mechanical strength, and handling characteristics of a seal in a solid polymer electrolyte fuel cell. The membrane electrode assembly of the present invention comprises a membrane-electrode structure having electrode layers and gas diffusion layers on both sides of a polymer electrolyte membrane, and a resin frame provided in such a manner as to fully enclose the outer periphery of the electrolyte membrane and to enclose at least portions of the outer peripheries of the gas diffusion layers, the resin frame being provided so as to enclose the electrolyte membrane side. The gas diffusion layer and electrode layer on one side are stacked on a surface of the electrolyte membrane so that a surface region of the electrolyte membrane is left exposed. The gas diffusion layer on the opposite side extends all around the outer periphery of the electrolyte membrane. The resin frame is attached fixedly to at least a portion to the surface region.
摘要:
Disclosed is a fluororesin-coated polymer film for reinforcing a polymer electrolyte membrane, wherein the fluororesin-coated polymer film is fabricated by forming on at least one side of a polymer film a coating of a reaction product of (A) a fluorine-containing copolymer composed of a fluoroolefin, a cyclohexyl group-containing acrylic ester, and a hydroxyl group-containing vinyl ether, and (B) a crosslinking agent having two or more isocyanate groups. The polymer film according to the present invention not only exhibits sufficiently high initial adhesion strength, with respect to the polymer electrolyte membrane, but also retains thereafter high adhesion strength in actual operating environments.
摘要:
The durability of a solid polymer electrolyte fuel cell can be enhanced by inhibiting deterioration of a polymer electrolyte membrane of a solid polymer electrolyte fuel cell without impairing power generation performance. The production process of a polymer electrolyte membrane for a solid polymer electrolyte fuel cell of the present invention is characterized by preparing a solution or dispersion of an alkoxide of a transition element or a rare earth element having a catalytic ability that decomposes peroxides, and (1) preparing a solution of a polymer electrolyte, uniformly mixing the solution or dispersion of the alkoxide with the solution of the polymer electrolyte, and forming a polymer electrolyte membrane, in which the transition metal or the rare earth metal is uniformly dispersed, from the mixed solution, or (2) preparing a polymer electrolyte membrane for a solid polymer electrolyte fuel cell, uniformly permeating the solution or dispersion of the alkoxide into the polymer electrolyte membrane, and forming a polymer electrolyte membrane in which the transition element or rare earth element is uniformly dispersed by hydrolyzing and condensing the alkoxide.
摘要:
The present invention provides a membrane electrode assembly that enhances the reliability, mechanical strength, and handling characteristics of a seal in a solid polymer electrolyte fuel cell. The membrane electrode assembly of the present invention comprises a membrane-electrode structure having electrode layers and gas diffusion layers on both sides of a polymer electrolyte membrane, and a resin frame provided in such a manner as to fully enclose the outer periphery of the electrolyte membrane and to enclose at least portions of the outer peripheries of the gas diffusion layers, the resin frame being provided so as to enclose the electrolyte membrane side. The gas diffusion layer and electrode layer on one side are stacked on a surface of the electrolyte membrane so that a surface region of the electrolyte membrane is left exposed. The gas diffusion layer on the opposite side extends all around the outer periphery of the electrolyte membrane. The resin frame is attached fixedly to at least a portion to the surface region.
摘要:
A composite membrane is provided in which a functional separation membrane is adhered to a hydrophilic porous fluoropolymer support membrane whose pores are coated with a fluorine-containing copolymer that provides durable hydrophilic properties to the membrane.
摘要:
The present invention is intended to provide a composite membrane excellent in both durability and moisture permeability.The present invention provides a composite membrane formed by laminating a layer of a moisture-permeable resin on one surface of a hydrophobic porous membrane, the composite membrane being characterized in that the layer of the moisture-permeable resin is included in a reinforcing porous membrane.
摘要:
The present invention is intended to provide a composite membrane excellent in both durability and moisture permeability.The present invention provides a composite membrane formed by laminating a layer of a moisture-permeable resin on one surface of a hydrophobic porous membrane, the composite membrane being characterized in that the layer of the moisture-permeable resin is included in a reinforcing porous membrane.
摘要:
Disclosed is a fluororesin-coated polymer film for reinforcing a polymer electrolyte membrane, wherein the fluororesin-coated polymer film is fabricated by forming on at least one side of a polymer film a coating of a reaction product of (A) a fluorine-containing copolymer composed of a fluoroolefin, a cyclohexyl group-containing acrylic ester, and a hydroxyl group-containing vinyl ether, and (B) a crosslinking agent having two or more isocyanate groups. The polymer film according to the present invention not only exhibits sufficiently high initial adhesion strength, with respect to the polymer electrolyte membrane, but also retains thereafter high adhesion strength in actual operating environments.
摘要:
An electrolyte membrane for a solid polymer fuel cell according to the present invention is a laminated body of (1) a first layer 11 comprising an ion exchange resin and (2) a second layer 12 comprising a porous body and an ion exchange resin filled into the fine pores of the porous body and is characterized in that an ion exchange capacity of the ion exchange resin for the second layer 12 is higher than an ion exchange capacity of the ion exchange resin for the first layer 11. Consequently, both of output performance and durability can be achieved simultaneously at a high level.