Abstract:
The present invention provides a sol of spinous silica-based particles in which silica-based particles having peculiar forms, spinous forms are dispersed in a solvent. The spinous silica-based particles have verrucous projections formed on surfaces of spherical silica-based particles. In the spinous particles, a value of the surface roughness (SA1/SA2, SA1 indicating a specific surface area measured by the BET method or the Sears method and SA2 indicating a specific surface area converted from an average particle diameter (D2) measured by the image analysis method) is in the range from 1.7 to 10. Furthermore the average diameter (D2) measured by the image analysis method is in the range from 7 to 150 nm.
Abstract:
Provided is a non-spherical silica sol containing non-spherical silica fine particles dispersed in a dispersion medium, the non-spherical silica fine particles having an average particle diameter in a range of 3 to 150 nm as measured by dynamic light scattering, a minor-diameter/major-diameter ratio in a range of 0.01 to 0.8, and a specific surface area in a range of 10 to 800 m2/g, and also having a plurality of wart-like projections on the surfaces thereof, and a process for producing the non-spherical silica sol. The non-spherical silica fine particles contained in the non-spherical silica sol have a unique structure different from the structure of ordinary non-spherical silica fine particles.
Abstract:
There is provided an antireflective laminate having a low refractive index and excellent mechanical strength, which comprises a coating layer of an ionizing radiation curing-type resin composition comprising ionizing radiation curing group-containing hollow silica fine particles. The antireflective laminate comprises a light transparent base material and at least a low refractive index layer having a refractive index of not more than 1.45 provided on the light transparent base material, wherein the low refractive index layer comprises an ionizing radiation curing-type resin composition and silica fine particles having an outer shell layer with the interior of the silica fine particles being porous or void, and, for a part or all of the silica fine particles, at least a part of the surface of the silica fine particle has been treated with an ionizing radiation curing group-containing silane coupling agent.
Abstract:
A chain antimony oxide fine particle group comprising antimony oxide fine particles which have an average particle diameter of 5 to 50 nm, are connected in the form of a chain and have an average connection number of 2 to 30 and preferably used for forming a hard coating film. The fine particle group can be prepared by a process comprising treating an alkali antimonate aqueous solution with a cation exchange resin to prepare an antimonic acid (gel) dispersion and then treating the dispersion with an anion exchange resin and/or adding a base to the dispersion. Also provided is a substrate with a film comprising a substrate and a hard coating film. The hard coating film includes a chain inorganic oxide fine particle group, in which inorganic oxide fine particles of 2 to 30 on the average are connected in the form of a chain, and a matrix. The inorganic oxide particles may be silica particles, silica-alumina particles being preferable, and porous particles and/or hollow particles having a cavity inside being more preferable.
Abstract:
Amorphous inorganic particles as a dental material includes silica and inorganic oxide(s) other than silica and has high x-ray impermeability. The inorganic particles as a dental material includes silica with the content in the range from 70 to 98 weight % and oxide(s) of one or more elements selected from the group of Zr, Ti, La, Ba, Sr, Hf, Y, Zn, AL, and B, wherein 5 to 70 weight % of the silica is originated from an acidic silicic acid solution and 30 to 95 weight % of the silica is originated from a sol of silica. The inorganic particles as a dental material have an average particle diameter in the range from 1 to 10 μm, specific surface area in the range from 50 to 350 m2/g, pore volume in the range from 0.05 to 0.5 ml/g, amorphous crystallinity as observed by x-ray diffraction, and the refractive index in the range from 1.47 to 1.60.
Abstract:
In polishing particles each having a core-shell structure, a polishing rate can be controlled by adjusting a thickness and/or density of a shell portion. The polishing particles have the core-shell structure with an average diameter in the range from 5 to 300 nm, and the shell portion of the polishing particles includes silica with a thickness in the range from 1 to 50 nm. A density of the shell portion is in the from 1.6 to 2.2 g/cc, while the Na content of the shell portion is less than 10 ppm.
Abstract:
A thermoplastic resin film excellent in slipperiness, wear resistance and transparency. The film contains 0.005 to 20 wt. % of specified fine particles of composite oxide comprising silica and at least one inorganic oxide other than silica. The film is preferably a polyester film having a hazing value of 5 % or less. It is suitable for use as magnetic tape, capacitor, photographic film and pressure-sensitive adhesive tape. The film is manufactured by adding a silicate of alkali metals, ammonium or organic bases and an alkali-soluble inorganic compound simultaneously to an alkali solution with pH 9 or above, generating fine particles of composite oxide without any control of the pH of this reaction solution, adding the obtaind sol to a thermoplastic resin and/or the reaction system thereof, and processing of a film.
Abstract:
Provided is a non-spherical silica sol containing non-spherical silica fine particles dispersed in a dispersion medium, the non-spherical silica fine particles having an average particle diameter in a range of 3 to 150 nm as measured by dynamic light scattering, a minor-diameter/major-diameter ratio in a range of 0.01 to 0.8, and a specific surface area in a range of 10 to 800 m2/g, and also having a plurality of wart-like projections on the surfaces thereof, and a process for producing the non-spherical silica sol. The non-spherical silica fine particles contained in the non-spherical silica sol have a unique structure different from the structure of ordinary non-spherical silica fine particles.
Abstract:
A recording sheet with an ink-receptive layer which can be used not only for dye type inks but also for pigment type inks is provided. Also provided is a coating liquid for forming an ink-receptive layer. The recording sheet with an ink-receptive layer includes a substrate sheet and an ink-receptive layer formed thereon, wherein the ink-receptive layer includes (i) fibrous crystalline particles on surfaces of which a cationic hydrated metal compound is supported and (ii) a binder. The fibrous crystalline particles have an average fiber diameter (D) of 0.1 to 2 μm, an average fiber length (L) of 1 to 200 μm and a ratio (aspect ratio) of an average fiber length (L) to an average fiber diameter (D) of 5 to 500.
Abstract:
Inorganic compound particles constituted of a shell, a porous matter or a cavity enclosed therein, and the porous matter or the cavity being kept unchanged in a subsequently formed transparent coating film.