Abstract:
An annular sliding member which is used in a mechanical seal, is attached to a rotating shaft, and slidably comes into contact, by being applied with energizing force in the axial direction, with another annular sliding member attached to a housing, wherein the sliding surface which comes into contact with the other sliding member is formed from: a dynamic pressure generating groove which guides a fluid to be sealed from a region to be sealed to the side of a region to not be sealed of the sliding surface, and a concave-convex section configured from a plurality of minute grooves which have a shallower depth than the dynamic pressure generating groove.
Abstract:
Sliding parts are provided wherein a plurality of pumping areas for generating pumping action via the relative rotational sliding of a stationary ring and a rotating ring is discontinuously formed in a circumferential direction on a sealing face of one of the stationary ring and rotating ring so as to communicate with a sealed fluid-containing space. The pumping areas are provided with intake pumping areas operating in a direction in which the sealed fluid is drawn in and outflow pumping areas operating in a direction in which the sealed fluid is expelled. A plurality of dynamic pressure-generating grooves for generating dynamic pressure via the relative rotational sliding of the stationary ring and the rotating ring are formed in a circumferential direction on a sealing face of the other of the stationary ring and the rotating ring so as to communicate with the sealed fluid-containing space.
Abstract:
An annular sliding member which is used in a mechanical seal, is attached to a rotating shaft, and slidably comes into contact, by being applied with energizing force in the axial direction, with another annular sliding member attached to a housing, wherein the sliding surface which comes into contact with the other sliding member is formed from: a dynamic pressure generating groove which guides a fluid to be sealed from a region to be sealed to the side of a region to not be sealed of the sliding surface, and a concave-convex section configured from a plurality of minute grooves which have a shallower depth than the dynamic pressure generating groove.
Abstract:
A primary technical goal of the present invention is to improve seal performance of a brush seal and to provide flexibility for preventing wear of the brush seal due to friction. The sheet brush seal disk comprises a first halved brush seal disk and a mating second halved brush seal disk wherein a pair of the first base portion of the first halved brush seal disk and the second base portion of the second halved brush seal disk are stacked with each other. In the brush portion of the sheet brush seal disk, the convex first brush portion and the concave first slit portion disposed in the first halved brush seal disk engage the convex second brush portion and the concave second slit portion disposed in the second halved brush seal disk, respectively.
Abstract:
When a clearance between a rotor and the free end of a brush seal of thin plates becomes larger by oscillation of the rotor or the like, the enlarged clearance is effectively sealed. In order to achieve this effect, in a brush seal device, brush seal units as recess layers and brush seal units as projection layers are stacked in the direction of the pressure of the sealed fluid to form recess and projection portion on its free end. The inner diameter of the recess layer is different from that of the projection layer.
Abstract:
A floating caliper disc brake system includes a caliper body housing a piston that presses a brake pad against a disc and a mount that slidably holds the caliper body in a direction perpendicular to the disc. The system further includes a slide pin that guides a sliding motion of the caliper body, which is connected to a pin securing portion provided for one side of the mount. A guide hole with which the slide pin is slidably engaged is formed in the other side of the mount. The slide pin is connected to the pin securing portion through an elastic bushing to decrease a slide pin guide clearance and substantially eliminate dragging.
Abstract:
A sliding part assembly includes a plurality of circumferentially separated sealed-fluid-accommodating blocks formed on a sealing face of either the stationary ring or the rotating ring so as to communicate with a sealed-fluid-accommodating space. Pumping areas for generating a pumping action due to the stationary and rotating ring sliding in relative rotation are formed on the bottom of the plurality of sealed-fluid-accommodating blocks. The pumping areas formed on the bottom of the plurality of sealed-fluid-accommodating blocks are provided with intake pumping areas operating in a direction so as to draw in the sealed fluid and outflow pumping areas operating in a direction so as to expel the sealed fluid. A seal dam area on the sealing face on which said sealed-fluid-accommodating blocks are formed is formed from a high-lubricity sliding material, the seal dam area being on the opposite side of the sealing face relative to the sealed-fluid side.
Abstract:
A sealing device is provided with a floating ring between an outer periphery of a rotating shaft and an inner periphery of a casing and is characterized in that a turn-stopping means is provided to a single point in a circumferential direction of the floating ring, and a groove for generating dynamic pressure is provided in unequal distribution in the circumferential direction to an inner peripheral surface of the floating ring, wherein a dynamic pressure is generated by a dynamic pressure groove provided to the inner peripheral surface of the floating ring and is employed to thereby match together the center of the rotating shaft and the floating ring.
Abstract:
Provided is a mechanical seal that ensures the flow rate of a cooling fluid, which is necessary to cool a slide seal surface, and that can prevent erosion from occurring. In the mechanical seal, the ratio between the depth and the width of each groove of a partial impeller is 2.0-5.0; the ratio of the distance between the grooves of the partial impeller to the width of a weir of a casing is 0.5-3.1; the ratio of the total length of the widths of the grooves of the partial impeller to the total length of the peripheral surface of the partial impeller, in which the grooves are formed, is 0.28-0.8; or the ratio of the length of the projected portion of the tip of each groove of the partial impeller to the width of a cooling liquid discharging groove of the casing is greater than 0 and less than or equal to 0.65.
Abstract:
A deflection yoke includes a horizontal deflection coil including a pair of saddle-shaped coils having a front transverse conductor and a rear conductor; a pair of void-core type horizontal auxiliary coils disposed only on the front transverse conductor, each auxiliary coil having a front semi-circular arc side part, a rear semi-circular arc side part, a right straight side part connected between the front semi-circular arc side part and a left straight side part connected between the front semi-circular arc side part, the horizontal auxiliary coils being connected with the horizontal deflection coil, such that a horizontal deflection current flows in the horizontal auxiliary coils in a direction corresponding to a more intense leak magnetic field generated by the front transverse conductor of the horizontal deflection coil; and a coil holder for holding the horizontal auxiliary coils such that the front semi-circular arc side parts are positioned along the front transverse conductor of the pair of saddle-shaped coils, respectively, and the rear semi-circular arc side parts are positioned adjacent a middle part of a core which is positioned behind the horizontal deflection coil.