摘要:
Disclosed is a light emitting device package including a package body having at least one cavity, at least one light emitting device mounted on the cavity, and a molding member disposed on the light emitting device to fill the cavity. The package body has at least one first recess formed at an upper portion than a bottom surface of the cavity, and the molding member is disposed to an inner edge of the at least one first recess.
摘要:
Disclosed is a method of preparing high crystalline nanoporous titanium dioxide, in which the high crystalline nanoporous titanium dioxide, which is harmless to the human body and self-purified through the decomposition of organic matters, is prepared in mass production at the room temperature through a simply synthesis method. The method includes the steps of (a) mixing a titanium precursor and a surfactant in a solvent and performing a sol-gel reaction at a room temperature; (b) maturing a reactant obtained through the sol-gel reaction at the room temperature; (c) filtering the matured reactant and washing the matured reactant; and (d) drying the washed reactant to obtain titanium dioxide having nanopores.
摘要:
The disclosed light emitting device includes an intermediate layer interposed between the light emitting semiconductor structure and the substrate. The light emitting semiconductor structure includes a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer interposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, wherein the active layer has a multi quantum well structure including at least one period of a pair structure of a quantum barrier layer including AlxGa(1−x)N (0
摘要翻译:所公开的发光器件包括介于发光半导体结构和衬底之间的中间层。 发光半导体结构包括第一导电型半导体层,第二导电型半导体层和介于第一导电型半导体层和第二导电型半导体层之间的有源层,其中活性层具有 包括包含Al x Ga(1-x)N(0
摘要:
A method for preparing impurity-doped titanium dioxide photocatalysts having superior photo activity at a visible light region and an ultraviolet light region in mass production. The titanium dioxide photocatalysts are prepared in mass production using low-price reusable materials at a room temperature when titanium dioxide is doped with carbon, sulfur, nitrogen, fluorine, and phosphorous. The method for preparing impurity-doped titanium dioxide representing superior photo activity in both of the ultraviolet light region and the visible light region in mass production includes: stirring titanium dioxide powder while mixing the titanium dioxide powder with a doping agent; performing ultrasonification with respect to a mixed solution; washing a reactant obtained through the ultrasonification by using a washing solution while performing pressure-reduction filtering with respect to the reactant; obtaining doped titanium dioxide particles by drying the reactant; and performing heat treatment with respect to the doped titanium dioxide particles at a nitrogen atmosphere.
摘要:
Disclosed herein are a display apparatus for a vehicle and a method of controlling the same. The display apparatus includes: a user interface; a sensing unit providing approaching person information; a display unit; and a controlling unit controlling the display screen of the display unit based on an input through the user interface and changing and providing usable menus according to an approaching person based on the approaching person information provided through the sensing unit when the movement of the vehicle is sensed by the sensing unit.
摘要:
The present invention relates to a method for preparing anatase-type titanium dioxide (TiO2) nanoparticles, the method comprising the steps of: uniformly mixing titanium n-butoxide and cetyltrimethyl ammonium salt (CTAS) in water; subjecting the mixture to hydrothermal treatment at a temperature of 60˜120° C.; and collecting anatase-type titanium dioxide nanoparticles produced by the hydrothermal treatment and drying the collected nanoparticles. According to the present invention, anatase-type titanium dioxide nanoparticles having excellent crystallinity can be easily prepared in large amounts by a simple process without needing heat treatment.