Abstract:
A method of manufacturing a magnetic field sensor device in one embodiment includes applying a mask on a substrate, performing a wet etching procedure on the substrate for generating at least a first groove having tilted side walls, and depositing at least one layer of magnetoresistive material onto a section of the surface of at least a first tilted side wall of the groove. A method of manufacturing a magnetic field sensor device on a substrate having a plurality of tilted planar sections, each of the tilted planar sections having a surface normal angled with respect to a surface normal of the substrate is also provided. The method includes depositing a magnetoresistive layered structure positioned at each of the tilted planar sections of the substrate, wherein the tilted planar sections are oriented such that a direction of an applied magnetic field in at least one of an x-, y- and z-direction relative to the substrate is detectable based on field-induced resistance changes of the magnetoresistive layered structures.
Abstract:
Embodiments of the present invention provide a thin-film coil assembly. The coil assembly includes a substrate, at least two layers of conductive material on top of the substrate, and one layer of insulating material between the two layers of conductive material, wherein the two layers of conductive material are in contact with two interconnects, respectively, which extends substantially vertical to the substrate.
Abstract:
A method, a magnetic field sensor, and an electronic device measure and determine the magnitude and/or the direction of a magnetic field. The magnetic sensor is based on at least a first magnetoresistive-layered structure having an electric resistance depending on the magnitude of the magnetic field. The magnetic sensor generates at least a first offset magnetic field. The magnitude and the direction of the offset magnetic field can be modified to compensate the magnetic field. The electric resistance of the magnetoresistive-layered structure depends on the superposition of magnetic field and offset magnetic field. A maximum electric resistance indicates that the magnetic field is compensated by the offset magnetic field. In this case the magnitude of the magnetic field corresponds to the magnitude of the offset magnetic field, and the direction of the magnetic field is given by the reversed direction of the offset magnetic field.
Abstract:
A magnetic field sensor device comprising a substrate having at least a first tilted planar section having a surface normal at a first angle with respect to a surface normal of the substrate, and at least a first magnetoresistive layered structure positioned at the at least first tilted section. Methods for manufacturing magnetic field sensor devices are also presented.
Abstract:
A method of manufacturing a magnetic field sensor device in one embodiment includes applying a mask on a substrate, performing a wet etching procedure on the substrate for generating at least a first groove having tilted side walls, and depositing at least one layer of magnetoresistive material onto a section of the surface of at least a first tilted side wall of the groove. A method of manufacturing a magnetic field sensor device on a substrate having a plurality of tilted planar sections, each of the tilted planar sections having a surface normal angled with respect to a surface normal of the substrate is also provided. The method includes depositing a magnetoresistive layered structure positioned at each of the tilted planar sections of the substrate, wherein the tilted planar sections are oriented such that a direction of an applied magnetic field in at least one of an x-, y- and z-direction relative to the substrate is detectable based on field-induced resistance changes of the magnetoresistive layered structures.
Abstract:
Embodiments of the present invention provide a thin-film coil assembly. The coil assembly includes a substrate, at least two layers of conductive material on top of the substrate, and one layer of insulating material between the two layers of conductive material, wherein the two layers of conductive material are in contact with two interconnects, respectively, which extends substantially vertical to the substrate.
Abstract:
A method, a magnetic field sensor, and an electronic device measure and determine the magnitude and/or the direction of a magnetic field. The magnetic sensor is based on at least a first magnetoresistive-layered structure having an electric resistance depending on the magnitude of the magnetic field. The magnetic sensor generates at least a first offset magnetic field. The magnitude and the direction of the offset magnetic field can be modified to compensate the magnetic field. The electric resistance of the magnetoresistive-layered structure depends on the superposition of magnetic field and offset magnetic field. A maximum electric resistance indicates that the magnetic field is compensated by the offset magnetic field. In this case the magnitude of the magnetic field corresponds to the magnitude of the offset magnetic field, and the direction of the magnetic field is given by the reversed direction of the offset magnetic field.
Abstract:
A method, a magnetic field sensor, and an electronic device measure and determine the magnitude and/or the direction of a magnetic field. The magnetic sensor is based on at least a first magnetoresistive-layered structure having an electric resistance depending on the magnitude of the magnetic field. The magnetic sensor generates at least a first offset magnetic field. The magnitude and the direction of the offset magnetic field can be modified to compensate the magnetic field. The electric resistance of the magnetoresistive-layered structure depends on the superposition of magnetic field and offset magnetic field. A maximum electric resistance indicates that the magnetic field is compensated by the offset magnetic field. In this case the magnitude of the magnetic field corresponds to the magnitude of the offset magnetic field, and the direction of the magnetic field is given by the reversed direction of the offset magnetic field.
Abstract:
A magnetic field sensor device comprising a substrate having at least a first tilted planar section having a surface normal at a first angle with respect to a surface normal of the substrate, and at least a first magnetoresistive layered structure positioned at the at least first tilted section. Methods for manufacturing magnetic field sensor devices are also presented.
Abstract:
A method, a magnetic field sensor, and an electronic device measure and determine the magnitude and/or the direction of a magnetic field. The magnetic sensor is based on at least a first magnetoresistive-layered structure having an electric resistance depending on the magnitude of the magnetic field. The magnetic sensor generates at least a first offset magnetic field. The magnitude and the direction of the offset magnetic field can be modified to compensate the magnetic field. The electric resistance of the magnetoresistive-layered structure depends on the superposition of magnetic field and offset magnetic field. A maximum electric resistance indicates that the magnetic field is compensated by the offset magnetic field. In this case the magnitude of the magnetic field corresponds to the magnitude of the offset magnetic field, and the direction of the magnetic field is given by the reversed direction of the offset magnetic field.