摘要:
Novel texaphyrin compounds having improved functionalization are described. Metal complexes of these compounds are active as photosensitizers for the generation of singlet oxygen and thus are potentially useful for treatments performed with singlet oxygen. Several of the metallotexaphyrin complexes absorb light in the physiologically important range of 690-880 nm. The complexes form long-lived triplet states and thus may act as efficient photosensitizers for generation of singlet oxygen.
摘要:
The present invention relates to the use of water-soluble texaphyrin-diamagnetic metal complexes retaining lipophilicity as photosensitizers in the treatment of benign and malignant neoplastic tissue.
摘要:
The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells. They are water soluble, yet they retain sufficient lipophilicity so as to have greater affinity for lipid rich areas such as atheroma and tumors. They may be used for magnetic resonance imaging followed by photodynamic tumor therapy in the treatment of atheroma and tumors. These properties, coupled with their high chemical stability and appreciable solubility in water, add to their usefulness.
摘要:
The present invention is directed to methods for synthesizing water soluble hydroxy-substituted texaphyrins retaining lipophilicity. The synthesis comprises condensing a diformyltripyrrole with an ortho-phenylenediamine to give a nonaromatic texaphyrin having at least one hydroxy substituent, and oxidizing the condensation product to form an aromatic texaphyrin metal complex having at least one hydroxy substituent. These expanded porphyrin-like macrocycles may be used for magnetic resonance imaging and for photodynamic therapy in the treatment of atheroma and tumors.
摘要:
Texaphyrins are provided for use as radiation sensitizers. Advantageous properties of texaphyrins for use as a radiation sensitizer include: i) a low redox potential which allows radiation-induced hydrated electrons to flow to texaphyrin rather than neutralizing hydroxyl radicals, allowing hydroxyl radicals to cause cellular damage, ii) a relatively stable texaphyrin radical that reacts readily to covalently modify neighboring molecules causing further cellular damage, iii) intrinsic biolocalization, and iv) indifference to the presence or absence of O.sub.2. These properties allow texaphyrins to be particularly effective for treating the hypoxic areas of solid neoplasms. Methods of treatment for an individual having a neoplasm or atheroma include the use of a texaphyrin as a radiation sensitizer and as an agent for photodynamic tumor therapy, or the use of a texaphyrin for internal and for external ionizing radiation. Novel texaphyrins are provided.
摘要:
Texaphyrin metal complexes having improved functionalization including the addition of electron donating groups to positions 12, 15, 18 and/or 21 and/or the addition of electron withdrawing groups to positions 15 or 18 of the macrocycle. Electron donating groups at positions 12, 15, 18 and/or 21 contribute electrons to the aromatic .pi. system of the macrocycle which stabilizes the metal complex to demetallation and the imine bonds to hydrolysis, these texaphyrin metal complexes having enhanced stability are useful for localization, magnetic resonance imaging, radiosensitization, radiation therapy, fluorescence imaging, photodynamic tumor therapy and applications requiring singlet oxygen production for cytotoxicity. Electron withdrawing groups at positions 15 or 18 render the macrocycle more readily reduced, i.e. the redox potential is lower and the macrocycle more readily gains an electron to form a radical. Such texaphyrins having a low redox potential are useful for radiosensitization applications.
摘要:
The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells. They are water soluble, yet they retain sufficient lipophilicity so as to have greater affinity for lipid rich areas such as atheroma and tumors. They may be used for magnetic resonance imaging followed by photodynamic tumor therapy in the treatment of atheroma and tumors. These properties, coupled with their high chemical stability and appreciable solubility in water, add to their usefulness.
摘要:
The present invention involves water soluble hydroxy-substituted texaphyrins retaining lipophilicity, the synthesis of such compounds and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Various metal (e.g., transition, main group, and lanthanide) complexes of the hydroxy-substituted texaphyrin derivatives of the present invention have unusual water solubility and stability. They absorb light strongly in a physiologically important region (i.e. 690-880 nm). They have enhanced relaxivity and therefore are useful in magnetic resonance imaging. They form long-lived triplet states in high yield and act as photosensitizers for the generation of singlet oxygen. Thus, they are useful for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus as well as tumor cells. They are water soluble, yet they retain sufficient lipophilicity so as to have greater affinity for lipid rich areas such as atheroma and tumors. They may be used for magnetic resonance imaging followed by photodynamic tumor therapy in the treatment of atheroma and tumors. These properties, coupled with their high chemical stability and appreciable solubility in water, add to their usefulness.
摘要:
The present invention involves a novel tripyrrole dimethine-derived "expanded porphyrin" (texaphyrin), the synthesis of such compounds, their analogs or derivatives and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Metal complexes of these compounds are active as photosensitizers for the generation of singlet oxygen and thus potentially for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus and tumor cells as well. A variety of texaphyrin derivatives have been produced and many more are readily obtainable. Various metal (e.g., transition, main group, and lanthanide) complexes with the texaphyrin and texaphyrin derivatives of the present invention have unusual water solubility and stability which render them particularly useful. These metallotexaphyrin complexes have optical properties making them unique as compared to existing porphyrin-like or other macrocycles. For example, they absorb light strongly in a physiolThis invention was made in part with government support under the National Science Foundation Presidential Young Investigator Award (1986) to J. L. Sessler, grant CHE-8552768. The government has certain rights in the invention.
摘要:
The present invention involves a novel tripyrrole dimethine-derived "expanded porphyrin" (texaphyrin), the synthesis of such compounds, their analogs or derivatives and their uses. These expanded porphyrin-like macrocycles are efficient chelators of divalent and trivalent metal ions. Metal complexes of these compounds are active as photosensitizers for the generation of singlet oxygen and thus potentially for inactivation or destruction of human immunodeficiency virus (HIV-1), mononuclear or other cells infected with such virus and tumor cells as well. A variety of texaphyrin derivatives have been produced and many more are readily obtainable. Various metal (e.g., transition, main group, and lanthanide) complexes with the texaphyrin and texaphyrin derivatives of the present invention have unusual water solubility and stability which render them particularly useful. These metallotexaphyrin complexes have optical properties making them unique as compared to existing porphyrin-like or other macrocycles. For example, they absorb light strongly in a physilogically important region (i.e. 690-880 nm). These complexes also form long-lived triplet states in high yield and act as efficient photosensitizers for the formation of singlet oxygen. These properties, coupled with their high chemical stability and appreciable solubility in polar media such as water, add to their usefulness.