Abstract:
A method for operating a turbocharged engine is disclosed. In one example, an engine operation is adjusted in response to a turbocharger expansion ratio. Degradation of the engine may be reduced under some engine operating conditions by adjusting engine operation in response to the turbocharger expansion ratio.
Abstract:
A circuit for generating multi-phase, non-overlapping clock signals includes a shift register that generates first and second clock signals from an input clock signal. First and second circuit modules generate corresponding first and second interim signals using the first and second clock signals and first and second feedback signals, respectively. The first and second interim signals are non-overlapping by at least a predetermined minimum time difference. The first and second interim signals are multiplexed to generate an output signal. The output signal is delayed by a first predetermined time to generate a first delay signal. The first delay signal is delayed by a second predetermined time to generate a second delay signal. The second delay signal is de-multiplexed to generate the first and the second feedback signals, and the first delay signal is de-multiplexed to generate the set of multi-phase, non-overlapping clock signals.
Abstract:
Pharmaceutical compositions, and a method of stabilizing pharmaceutical compositions having clevidipine, or any pharmaceutically acceptable salt thereof, as the active ingredient is described. The method includes the slowing down or inhibiting of the oxidation pathway of clevidipine. This can be accomplished by reducing the amount the pharmaceutical composition is exposed to oxygen and/or light during the manufacturing and storing processes. According to this method, oxygen must be removed or replaced, or light must be sufficiently blocked such that light energy cannot reach the active ingredient of the composition, or is reduced to a level that the light-induced oxidation reaction converting clevidipine to H324/78 is minimized, such that the total detectable level of H324/78 in a given composition sample does not exceed about 0.2% on a weight-by-weight basis, or the ratio of clevidipine to H324/78 is equal to or greater than about 450 to 1 on a weight-to-weight basis.
Abstract:
A composition having clevidipine as an active ingredient is described. The composition includes clevidipine as an active ingredient and an amount of the impurity H168/79 that is no greater than about 1.5%, or where the ratio between clevidipine and H168/79 is equal or above 60 to 1.
Abstract:
A method of training a document analysis system to extract data from documents is provided. The method includes: automatically analyzing images and text features extracted from a document to associate the document with a corresponding document category; comparing the extracted text features with a set of text features associated with corresponding category of the document, in which the set of text features includes a set of characters, words, and phrases; if the extracted features are found to consist of the characters, words, and phrases belonging to the set of text features associated with the corresponding document category, storing the extracted text features as the data contained in the corresponding document; and, if the extracted text features are found to include at least one text feature that does not belong to the set of text features associated with the corresponding document category, submitting the unrecognized text features to a training phase.
Abstract:
The present application provides novel compositions comprising posaconazole and a polymer wherein the composition has a glass transition temperature (Tg) of less than about 1100 C. The application also describes compositions comprising posaconazole and a polymer having a bulk density of greater than about 0.4 mg/mL. The application also describes compositions comprising posaconazole and a polymer which provide an exposure (AUCtf) of at least about 10,000 ng·hr/mL when administered to a patient in a fasted state. The application also describes a novel process for preparing these compositions. The preff erred polymer is HPMCAS. Preferably the composition is an extruded material.
Abstract:
A system and methods for service discovery and publication are disclosed. Application programs write requests for service discovery, publication, and subscription to a service discovery application programming interface. The service discovery application programming interface invokes one or more lower-level protocols to satisfy the discovery, publication and/or subscription request. Service information retrieved from lower-layer protocols is formatted into a consistent data model and returned to the client application. In addition, service information may be stored in a persistent data store managed by a discovery persistence service communicatively connected to the service discovery API.
Abstract:
A system and methods for service discovery and publication are disclosed. Application programs write requests for service discovery, publication, and subscription to a service discovery application programming interface. The service discovery application programming interface invokes one or more lower-level protocols to satisfy the discovery, publication and/or subscription request. Service information retrieved from lower-layer protocols is formatted into a consistent data model and returned to the client application. In addition, service information may be stored in a persistent data store managed by a discovery persistence service communicatively connected to the service discovery API.
Abstract:
Herein is described an implementation of an object persister, which serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialized object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.
Abstract:
The object persister serializes an object to preserve the object's data structure and its current data. The serialized object is encoded using XML and inserted within a message. That message is transmitted to an entity over a network. Such a transmission is performed using standard Internet protocols, such as HTML. Upon receiving the serialized object, the receiving entity deserializes the object to use it. Rather than include copies of referenced objects within the serialized object, the object persister includes references to those objects. This avoids redundant inclusion of the same object and potentially infinite inclusion of the object itself that is being serialized.