Abstract:
A method of training a document analysis system to extract data from documents is provided. The method includes: automatically analyzing images and text features extracted from a document to associate the document with a corresponding document category; comparing the extracted text features with a set of text features associated with corresponding category of the document, in which the set of text features includes a set of characters, words, and phrases; if the extracted features are found to consist of the characters, words, and phrases belonging to the set of text features associated with the corresponding document category, storing the extracted text features as the data contained in the corresponding document; and, if the extracted text features are found to include at least one text feature that does not belong to the set of text features associated with the corresponding document category, submitting the unrecognized text features to a training phase.
Abstract:
A method of automatically extracting data from an electronic document containing a plurality of layout features through progressive refinement is provided. The method includes: analyzing each document to automatically extract images and text features wherein each document includes at least two features that are related to each other, and wherein said analyzing compares extracted features with a first search space of candidate features to try and recognize the extracted features; if one of the at least two related features is not recognized and at least one feature is recognized, selecting a second search space of candidate features in response thereto and in response to predefined rules about the relationship between the two features; and comparing the unrecognized feature with said selected second search space.