Abstract:
Methods, systems, and computer-readable media are provided for offloading services and functionalities from a main host central processing unit (CPU) of a computing device to a dedicated power-efficient offload engine, thereby enabling a longer battery life for the device and an enhanced set of features.
Abstract:
A system and method for the distribution of time signals is available for devices with multiple communication cores. An embodiment may or may not use a centralized manager for the management of time preservation. When a communication core in a multiple communication core device requires timing information, it may request the time information from another communication core or from the centralized manager. The centralized manager, if present, can obtain time information from an external source or from one of the communication cores. The result can be reduced power consumption at a lower cost.
Abstract:
Described herein are techniques related to irregular periodic reporting of location-related information. The techniques enable the location engine to operate in irregular periodic reporting modes and dynamically adapt one or more different irregular periodic reporting patterns. The techniques may advantageously enable significant power saving while maintaining adequate accuracy in the reported location-related information to satisfy a given level of quality of service. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A method for caching specified data in an n-way set associative memory with a copy-back update policy consists of the following steps. First, a row of the associative memory, organized as a plurality of rows and having n ways per row, is selected according to the main memory address of the specified data. The main memory provides primary storage for the data being cached. If one of the ways of the selected row holds invalid data, the specified data is cached in the way holding the invalid data and the data caching process is discontinued. If all n ways of the selected row hold valid data, the following steps are performed. First, a replacement strategy is used to select a way from the selected row. If the way selected in accordance with the replacement strategy holds unmodified data, the specified data is cached in the way selected by the replacement strategy and the data caching process is discontinued. However, if the way selected by the replacement strategy holds modified data, the ways of the selected row are examined again to find a way that holds data from the currently open page of the main memory. If such at least one such way is found, the specified data is cached in one of the ways holding data from the open page, and the data caching process is discontinued. Finally, if none of the ways in the selected row meet the above criteria, the specified data is cached in the way previously selected by the replacement algorithm, and the method terminates.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating Assisted Global-Navigation-Satellite-System (A-GNSS) information. For example, a portable device may include may include a Global-Navigation-Satellite-System (GNSS) receiver to receive GNSS information from a plurality of satellites; a non-cellular transceiver to receive Assisted-GNSS (A-GNSS) information from a cellular device via a non-cellular network; and a processor to process the GNSS information based on the A-GNSS information.
Abstract:
A single high-speed bus accommodates both low-rate and high-rate bi-directional signal traffic by interleaving the traffic at the two rates sequentially so that all the data in the bus at any given time is either high-rate or low-rate. The interleaving is executed by a statistical aggregator according to a policy tailored to the traffic expected in the particular bus. The policy may be static and predetermined, or it may be dynamic and adaptive. Adaptive policies are continually updated with predictions of future traffic based on the statistics of past and/or present traffic. The technique may be implemented in both on-chip and system-level bus interfaces.
Abstract:
Aspects of the disclosure permit agile acquisition of a location service in a device. In one aspect of such acquisition, the device can rely on location signals available globally in order to determine a region associated with the device, and in response to determination of the region, the device can acquire service information representative or otherwise indicative of the location service based at least on the region. In another aspect, the device can be configured to consume the location service. The agility of such acquisition can stem from the absence of (i) scanning for location services associated with the area in which the device is present and/or (ii) a predefined pool of location services established in production of the device.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of clock distribution. For example, a device may include a plurality of wireless communication units including at least a first wireless communication unit, which includes a first clock source to generate a first clock signal, and a second wireless communication unit, which includes a second clock source to generate a second clock signal, wherein the plurality of wireless communication units are to switch between commonly using the first clock signal as a common master clock signal and commonly using the second clock signal as the common master clock signal.
Abstract:
Generally, this disclosure provides methods and apparatus for the protection and authentication of location services based on a distributed security system. The method may include exchanging security keys between a secure location processor (SLP) and a location requesting entity, the location requesting entity external to the SLP; obtaining location determination measurements, the obtaining performed by the SLP; determining a location based on the location determination measurements, the determining performed by the SLP; encrypting the location based on the security keys, the encrypting performed by the SLP; and transmitting the encrypted location from the SLP to the location requesting entity.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of clock distribution. For example, a device may include a plurality of wireless communication units including at least a first wireless communication unit, which includes a first clock source to generate a first clock signal, and a second wireless communication unit, which includes a second clock source to generate a second clock signal, wherein the plurality of wireless communication units are to switch between commonly using the first clock signal as a common master clock signal and commonly using the second clock signal as the common master clock signal.