Abstract:
A signal transceiver includes a first power amplifier coupled to a chip output port of a chip; an impedance transforming circuit; a switching circuit arranged to selectively couple the chip output port to a first port of the impedance transforming circuit; and a receiving amplifier coupled to a second port of the impedance transforming circuit.
Abstract:
A receiver includes a low noise amplifier (LNA), a passive mixer, a passive filter, a baseband processing block and a voltage controller. The LNA receives and amplifies a radio frequency (RF) signal. The passive mixer is coupled to the LNA without any AC coupling capacitance therebetween, and generates an intermediate frequency signal by down-converting the RF signal. The passive filter filters the intermediate frequency signal. The baseband processing block includes a transimpedance amplifier (TIA) and processes the filtered intermediate frequency signal. The voltage controller keeps a first node and a second node of a signal path to be around a common DC voltage, wherein the first node is located between an output terminal of the LNA and an input terminal of the passive mixer, and the second node is located between an output terminal of the passive mixer and an output terminal of the TIA.
Abstract:
An embodiment of the invention provides a sliced transmitter front-end (TX FE). The sliced TX FE includes first TX FE slices and a second TX FE slice that are connected in parallel. As a whole the first TX FE slices contributes a high-gain section to a superimposed gain range of the sliced TX FE. The second TX FE slice has a gain range that constitutes a low-gain section of the superimposed gain range of the sliced TX FE. A minimum gain of the gain range of the second TX FE slice is smaller than a minimum gain of the high-gain section.
Abstract:
A wireless communication receiver includes a first signal processing circuit, a second signal processing circuit, and a detecting circuit. The first signal processing circuit generates a first processed signal by processing a received radio frequency (RF) signal. The second signal processing circuit is coupled to the first signal processing circuit. The detecting circuit monitors a specific signal of the first signal processing circuit and generates at least a control signal to the second signal processing circuit in response to a signal level of the monitored specific signal. The control signal controls the second signal processing circuit to switch from a first operation mode to a second operation mode.
Abstract:
Systems and methods are provided for calibrating the control mechanism in a communication circuit to allow the communication circuit to maintain a desired output power level. The communication circuit includes a variable gain adjustment circuit and a power amplifier, which operate together to provide an output power level. A control circuit controls the variable gain adjustment circuit based on a default gain parameter, a high power threshold, and a low power threshold. A calibration circuit in the control circuit calibrates a default gain parameter to provide a desired output power. A power detector can detect the desired output power level to provide an output power measurement. The calibration circuit calibrates upper and lower power thresholds to provide an acceptable range of power variation around the output power measurement.
Abstract:
Circuits and methods are provided for variable gain amplification. In one implementation, a circuit is provided that includes a control circuit, an amplifier circuit, and a gain circuit. The control circuit receives a control signal and produces a current control signal, the current control signal being a ratio of a first current and a second current. The amplifier circuit is operable to apply a gain to an input voltage for producing an output voltage. The gain circuit is in communication with the control circuit and the amplifier circuit and receiving the current control signal, the gain circuit operable to adjust the gain responsive to a change in the control signal.
Abstract:
A low noise amplifier (LNA) comprises an amplifier having an inverting input, a non-inverting input and an output. A first transistor has a control input that communicates with said output of said amplifier, a first terminal that generates a LNA output current and a second terminal that communicates with said inverting input. A device communicates with said second terminal of said first transistor, includes an output and has a resistance that is modulated in response to an input voltage to said LNA. The device is a variable resistor.
Abstract:
An embodiment of the invention provides a sliced transmitter front-end (TX FE). The sliced TX FE includes first TX FE slices and a second TX FE slice that are connected in parallel. As a whole the first TX FE slices contributes a high-gain section to a superimposed gain range of the sliced TX FE. The second TX FE slice has a gain range that constitutes a low-gain section of the superimposed gain range of the sliced TX FE. A minimum gain of the gain range of the second TX FE slice is smaller than a minimum gain of the high-gain section.
Abstract:
A wireless communication receiver includes a first signal processing circuit, a second signal processing circuit, and a detecting circuit. The first signal processing circuit generates a first processed signal by processing a received radio frequency (RF) signal. The second signal processing circuit is coupled to the first signal processing circuit. The detecting circuit monitors a specific signal of the first signal processing circuit and generates at least a control signal to the second signal processing circuit in response to a signal level of the monitored specific signal. The control signal controls the second signal processing circuit to switch from a first operation mode to a second operation mode.
Abstract:
An interference-robust receiver includes an RF signal processor, a frequency conversion interface and an analog signal processor. The RF signal processor provides an RF signal. The frequency conversion interface includes a passive mixer for generating an intermediate frequency signal by down-converting an in-band part of the RF signal to a passband of a filter and down-converting an out-of-band part of the RF signal to a stopband of the filter. The filter can thus filter the intermediate frequency signal with the passband and the stopband.