摘要:
A hybrid circuit for producing optical signals in response to electrical energizing signals, including: a tilted charge light-emitting device having an electrical input port and an optical output port, the device having an optical output response which is a function of input frequency; and an input interface circuit coupled with the electrical input port of the device, and having a transfer function substantially proportional to an inverse of the optical output response of the device; whereby application of the electrical energizing signals to the input interface circuit is operative to produce optical signals from the output optical port of the device. The input interface circuit includes a passive RLC circuit having a transfer function characterized by a region of increasing amplitude versus frequency.
摘要:
Provided are methods and kits for determining predisposition of a subject to develop a kidney disease, by identifying in a sample of the subject at least one APOL1 polypeptide variant which is characterized by a higher trypanolytic activity on Trypanosoma brucei rhodesiense as compared to the trypanolytic activity of wild type APOL1 polypeptide as set forth in SEQ ID NO:1 on the Trypanosoma brucei rhodesiense under identical assay conditions; or at least one APOL1 nucleotide mutation in the APLO1 genomic sequence set forth in SEQ ID NO:3, wherein the at least one nucleotide mutation or polypeptide variant being in linkage disequlibrium (LD) with the S342G mutation in the APOL1 polypeptide set forth in SEQ ID NO:1, wherein presence of the APOL1 polypeptide variant indicates increased predisposition of the subject to develop the kidney disease.
摘要翻译:提供了用于确定受试者的易感性以发展肾脏疾病的方法和试剂盒,通过在受试者样品中鉴定至少一种APOL1多肽变体,其特征在于与锥虫属罗非鱼相比具有更高的锥虫解活性, 野生型APOL1多肽,如同样的测定条件下的罗丹明锥虫在SEQ ID NO:1中所示; 或在SEQ ID NO:3中列出的APLO1基因组序列中的至少一个APOL1核苷酸突变,其中所述至少一个核苷酸突变或多肽变体与APOL1多肽中所示的S342G突变处于连锁不平衡(LD) ID NO:1,其中APOL1多肽变体的存在表明受试者发生肾脏疾病的易感性增加。
摘要:
The disclosure has application for use in establishing a communication link between a first location and a second location, the first location having an electrical driver circuit that receives input data to be communicated, and the second location having an electrical receiver circuit for producing output data representative of the input data. The method includes the following steps: providing a tilted charge light emitting device at the first location and coupled with the driver circuit such that the light produced by the tilted charge light-emitting device is a function of the input data; providing an optical fiber between the first and second locations; coupling light from the tilted charge light emitting device into the optical fiber; and providing, at the second location, a photodetector coupled with the optical fiber and with the receiver circuit; whereby electrical signals representative of the input data are output from the receiver circuit.
摘要:
A method for producing a high frequency optical signal component representative of a high frequency electrical input signal component, includes the following steps: providing a semiconductor transistor structure that includes a base region of a first semiconductor type between semiconductor emitter and collector regions of a second semiconductor type; providing, in the base region, at least one region exhibiting quantum size effects; providing emitter, base, and collector electrodes respectively coupled with the emitter, base, and collector regions; applying electrical signals, including the high frequency electrical signal component, with respect to the emitter, base, and collector electrodes to produce output spontaneous light emission from the base region, aided by the quantum size region, the output spontaneous light emission including the high frequency optical signal component representative of the high frequency electrical signal component; providing an optical cavity for the light emission in the region between the base and emitter electrodes; and scaling the lateral dimensions of the optical cavity to control the speed of light emission response to the high frequency electrical signal component.
摘要:
A method for producing controllable light pulses includes the following steps: providing a heterojunction bipolar transistor structure including collector, base, and emitter regions of semiconductor materials; providing an optical resonant cavity enclosing at least a portion of the transistor structure; and coupling electrical signals with respect to the collector, base, and emitter regions, to switch back and forth between a stimulated emission mode that produces output laser pulses and a spontaneous emission mode. In a form of the method, the electrical signals include an AC excitation signal, and part of each excitation signal cycle is operative to produce stimulated emission, and another part of each excitation signal cycle is operative to produce spontaneous emission.
摘要:
A semiconductor light-emitting transistor device, including: a bipolar pnp transistor structure having a p-type collector, an n-type base, and a p-type emitter; a first tunnel junction coupled with the collector, and a second tunnel junction coupled with the emitter; and a collector contact coupled with the first tunnel junction, an emitter contact coupled with the second tunnel junction, and a base contact coupled with the base; whereby, signals applied with respect to the collector, base, and emitter contacts causes light emission from the base by radiative recombination in the base.
摘要:
A method for producing light emission from a two terminal semiconductor device with improved efficiency, includes the following steps: providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on the drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of the base region and comprising an emitter mesa that includes at least one emitter layer; providing, in the base region, at least one region exhibiting quantum size effects; providing a base/drain electrode having a first portion on an exposed surface of the base region and a further portion coupled with the drain region, and providing an emitter electrode on the surface of the emitter region; applying signals with respect to the base/drain and emitter electrodes to obtain light emission from the base region; and configuring the base/drain and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween.
摘要:
The invention is applicable for use in conjunction with a light-emitting semiconductor structure that includes a semiconductor active region of a first conductivity type containing a quantum size region and having a first surface adjacent a semiconductor input region of a second conductivity type that is operative, upon application of electrical potentials with respect to the active and input regions, to produce light emission from the active region. A method is provided that includes the following steps: providing a semiconductor output region that includes a semiconductor auxiliary layer of the first conductivity type adjacent a second surface, which opposes the first surface of the active region, and providing the auxiliary layer as a semiconductor material having a diffusion length for minority carriers of the first conductivity type material that is substantially shorter than the diffusion length for minority carriers of the semiconductor material of the active region.
摘要:
A method for producing wide bandwidth laser emission responsive to high frequency electrical input signals, including the following steps: providing a heterojunction bipolar transistor device having collector, base, and emitter regions; providing at least one quantum size region in the base region, and enclosing at least a portion of the base region in an optical resonant cavity; coupling electrical signals, including the high frequency electrical input signals, with respect to the collector, base and emitter region, to cause laser emission from the transistor device; and reducing the operating beta of the transistor laser device to enhance the optical bandwidth of the laser emission in response to the high frequency electrical signals.
摘要:
A method for producing light emission from a two terminal semiconductor device with improved efficiency, includes the following steps: providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on the drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of the base region and comprising an emitter mesa that includes at least one emitter layer; providing, in the base region, at least one region exhibiting quantum size effects; providing a base/drain electrode having a first portion on an exposed surface of the base region and a further portion coupled with the drain region, and providing an emitter electrode on the surface of the emitter region; applying signals with respect to the base/drain and emitter electrodes to obtain light emission from the base region; and configuring the base/drain and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween.