Abstract:
The invention relates to a treatment process of a sulphur-containing hydrocarbon fraction, comprising the following steps: a) a hydrodesulphurization step of said hydrocarbon fraction to produce a sulphur-depleted effluent, consisting of passing the hydrocarbon fraction mixed with hydrogen over at least one hydrodesulphurization catalyst. b) a step of separation of the partially desulphurized hydrocarbon fraction from the hydrogen introduced in excess, as well as the H2S formed in step a). c) a step of collecting both mercaptans and thiophenic compounds, consisting of placing the partially desulphurized hydrocarbon fraction originating in step b) in contact with an adsorbent comprising at least one element chosen from the group constituted by the elements of groups VIII, IB, IIB and IVA, the adsorbent being used in reduced form in the absence of hydrogen at a temperature above 40° C., the metal content in the reduced form of the adsorbent being above 25% by weight.
Abstract:
The invention concerns a process for hydrodesulphurizing a gasoline containing less than 0.1% by weight of sulphur derived from a catalytic cracking unit or other conversion units, said process comprising at least one hydrodesulphurization reactor using a bimetallic catalyst operating at a HSV in the range 0.1 h−1 to 20 h−1, a temperature in the range 220° C. to 350° C. and a pressure in the range 0.1 MPa to 5 MPa, and comprising recycling a fraction of the desulphurized gasoline to the inlet to the hydrodesulphurization reactor with a recycle ratio in the range 0.1 to 3 times the flow rate of the gasoline to be desulphurized.
Abstract:
A process for reducing the quantity of sulphur present in a hydrocarbon feed such as a gasoline or a gas oil, comprises: d) bringing said feed containing sulphur-containing compounds into contact with an adsorbent having a selectivity for sulphur-containing compounds under conditions for producing, at the outlet from the contact zone, a desulphurized effluent which is collected, said adsorption being carried out in the liquid phase or in the gas phase; e) gas phase desorption of the sulphur-containing compounds present on said adsorbent using a hydrogen-containing gaseous fluid derived from a hydrodesulphurization zone to obtain a gaseous effluent comprising hydrogen and desorbed sulphur-containing compounds; sending the gaseous effluent from step b) to said hydrodesulphurization zone and desulphurizing it therein.
Abstract:
A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form, deposited on a specific support comprising a metal aluminate of the MAl2O4 type with a metal M selected from the group constituted by nickel and cobalt, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h−1 to 10 h−1 and at a pressure in the range of 0.5 to 5 MPa.
Abstract:
A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds employing a supported catalyst, comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a controlled porosity, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h−1 to 10 h−1 and at a pressure in the range of 0.5 to 5 MPa.
Abstract:
A process and the use of a process for desulphurizing a hydrocarbon feed is described which comprises at least one of the following steps: A a step for selective hydrogenation of diolefins present in said initial hydrocarbon feed, in the presence of a catalyst comprising a metal from group VIII of the periodic table on an inert support based on metal oxides, in the presence of a quantity of hydrogen which is in excess with respect to the stoichiometric value necessary for hydrogenating all of said diolefins, the mole ratio between the hydrogen and the diolefins being in the range 1 to 5; b) Extraction, using an appropriate solvent, of said hydrogenated fraction to obtain at least two cuts including: a raffinate comprising the majority of the olefins, paraffins and naphthenes and a reduced quantity of sulphur-containing compounds contained in the initial feed; a heavy fraction containing the heavy aromatic hydrocarbons and the majority of the sulphur-containing compounds contained in the initial feed; C a step for regenerating the solvent by distillation; at least two of steps A, B and C being carried out jointly.
Abstract:
The invention relates to a process for the production of a gasoline with a low sulfur content starting from an initial gasoline that comprises olefins, thiophene compounds and mercaptans and comprises a stage for treating at least one fraction of the initial gasoline under conditions of alkylation of the thiophene compounds by the olefins, a stage for treating at least one fraction of the effluent that is obtained from the preceding stage under conditions of addition of the olefins to the mercaptans, and a distillation stage for obtaining a light fraction that is low in thiophene compounds and mercaptans, and a heavy fraction that is high in sulfur.
Abstract:
For desulfurization of a hydrocarbon-containing feedstock, at least one stage for selective hydrogenation of diolefins present in the initial hydrocarbon feedstock, in the presence of a catalyst of group VIII of the period table, and a stage for extraction by a solvent of the resultant hydrogenated fraction under conditions that provide at least two fractions: a raffinate that comprises for the most part olefins, paraffins and naphthenes and a reduced amount of sulfur-containing compounds that are contained in the initial feedstock, a fraction that contains the majority of the aromatic hydrocarbons and the majority of the sulfur-containing compounds contained in the initial feedstock.
Abstract:
Conducting the hydrodesulphurization of gasoline cuts in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII)/(element of group VIII+tungsten) is greater than 0.15 and less than 0.50, preferably 0.35–0.40 inclusive.
Abstract:
A process for desulphurizing a gasoline cut containing olefins, sulphur-containing compounds and optionally molecules belonging to C3 and C4 cuts comprises at least a first step A for contacting said gasoline cut with an acidic resin having an acid capacity of more than 4.7 equivalents per kg and a specific surface area of less than 55 m2/g, and a second step B for fractionation of the mixture from the first step.