摘要:
Methods, apparatus, and articles of manufacture control a device or system that has an operational limit related to the rate or frequency of operation. The frequency of operation is controlled at a variable rate calculated to maximize the system or apparatus performance over a calculated period of time short enough that a controlling factor, such as power consumption, does not vary significantly during the period. Known system parameters, such as thermal resistance and capacitance of an integrated circuit (IC) and its package, and measured values, such as current junction temperature in an IC, are used to calculate a time-dependent frequency of operation for the upcoming time period that results in the best overall performance without exceeding the operational limit, such as the junction temperature.
摘要:
Methods, apparatus, and articles of manufacture control a device or system that has an operational limit related to the rate or frequency of operation. The frequency of operation is controlled at a variable rate calculated to maximize the system or apparatus performance over a calculated period of time short enough that a controlling factor, such as power consumption, does not vary significantly during the period. Known system parameters, such as thermal resistance and capacitance of an integrated circuit (IC) and its package, and measured values, such as current junction temperature in an IC, are used to calculate a time-dependent frequency of operation for the upcoming time period that results in the best overall performance without exceeding the operational limit, such as the junction temperature.
摘要:
Methods, apparatuses and systems may provide for operating a machine learning device by obtaining training image data, conducting an offline prediction analysis of the training image data with respect to one or more real-time parameters of an image capture device, and generating one or more parameter detection models based on the offline prediction analysis. Additionally, methods, apparatuses and systems may provide for operating the image capture device by obtaining a candidate image associated with the image capture device, determining that the candidate image corresponds to a particular type of scene represented in a parameter prediction model, and adjusting one or more real-time parameters of the image capture device based at least in part on one or more parameter values associated with the particular type of scene.
摘要:
The operating rate of an electronic system is maximized without exceeding a thermal constraint, such as a maximum junction temperature of an integrated circuit (IC) or other portion of the electronic system. An operating parameter of the system that controls the thermal output of the system is calculated for an upcoming time period based upon the previously measured thermal performance relationship to the operating parameter level. If the predicted thermal performance will exceed a maximum allowable level of the thermal constraint, then the operating parameter is reduced by an amount calculated to keep the thermal constraint at a level just below the maximum allowable level, thus resulting in an optimal control approach to maximizing the system performance while not exceeding the thermal constraint.
摘要:
Methods, apparatus, and articles of manufacture control a device or system that has an operational limit related to the rate or frequency of operation. The frequency of operation is controlled at a variable rate calculated to maximize the system or apparatus performance over a calculated period of time short enough that a controlling factor, such as power consumption, does not vary significantly during the period. Known system parameters, such as thermal resistance and capacitance of an integrated circuit (IC) and its package, and measured values, such as current junction temperature in an IC, are used to calculate a time-dependent frequency of operation for the upcoming time period that results in the best overall performance without exceeding the operational limit, such as the junction temperature.
摘要:
Disclosed is a system and method for image processing and image subject matching. A circuit and system may be used for matching/correlating an object/subject or person present (i.e. visible within) within two or more images. An object or person present within a first image or a first series of images (e.g. a video sequence) may be characterized and the characterization information (i.e. one or a set of parameters) relating to the person or object may be stored in a database, random access memory or cache for subsequent comparison to characterization information derived from other images.
摘要:
Methods, apparatus, and articles of manufacture control a device or system that has an operational limit related to the rate or frequency of operation. The frequency of operation is controlled at a variable rate calculated to maximize the system or apparatus performance over a calculated period of time short enough that a controlling factor, such as power consumption, does not vary significantly during the period. Known system parameters, such as thermal resistance and capacitance of an integrated circuit (IC) and its package, and measured values, such as current junction temperature in an IC, are used to calculate a time-dependent frequency of operation for the upcoming time period that results in the best overall performance without exceeding the operational limit, such as the junction temperature.
摘要:
The operating rate of an electronic system is maximized without exceeding a thermal constraint, such as a maximum junction temperature of an integrated circuit (IC) or other portion of the electronic system. An operating parameter of the system that controls the thermal output of the system is calculated for an upcoming time period based upon the previously measured thermal performance relationship to the operating parameter level. If the predicted thermal performance will exceed a maximum allowable level of the thermal constraint, then the operating parameter is reduced by an amount calculated to keep the thermal constraint at a level just below the maximum allowable level, thus resulting in an optimal control approach to maximizing the system performance while not exceeding the thermal constraint.