摘要:
Embodiments are directed towards enabling digital cameras to digitally process a captured a Low Dynamic Range image sequence at a real time video rate, and to convert the image sequence into an High Dynamic Range (HDR) image sequence using a pipelined architecture. Two or more image frames are captured using different exposure settings and then combined to form a single HDR output frame in a video sequence. The pipelined architecture operate on adjacent image frames by performing an image alignment, an image mixing, and a tone mapping on the adjacent image frames to generate the HDR image sequence.
摘要:
Embodiments are directed towards enabling digital cameras to digitally process captured two dimensional image sequences at a real time video rate, to convert the two dimensional image sequences into stereoscopic three dimensional image sequences. In one embodiment, using a pipelining architecture, various statistics are obtained for a captured two dimensional sequence. The statistics are used to estimate depth within each frame image within the sequence, in real time. Using the depth data a disparity map is generated that is provided to a warping component to generate a second perspective of the two dimensional image. The two images for the frame provide a three dimensional perspective for the frame within the sequence. Together the two perspective images for the frame are provided to a video encoder component to encode the stereoscopic three dimensional frame for the sequence.
摘要:
Embodiments are directed towards determining within a digital camera whether a pixel belongs to a foreground or background segment within a given image by evaluating a ratio of derivative and deviation metrics in an area around each pixel in the image, or ratios of derivative metrics across a plurality of images. For each pixel within the image, a block of pixels are examined to determine an aggregate relative derivative (ARD) in the block. The ARD is compared to a threshold value to determine whether the pixel is to be assigned in the foreground segment or the background segment. In one embodiment, a single image is used to determine the ARD and the pixel segmentation for that image. Multiple images may also be used to obtain ratios of a numerator of the ARD, useable to determine an extent of the foreground.
摘要:
A device and methods are provided for low-light imaging enhancement by a digital imaging device. In one embodiment, a method includes detecting an image associated with ambient lighting of a scene, detecting an image associated with artificial lighting of the scene, aligning the image associated with ambient lighting relative to the image associated with artificial lighting based on a motion parameter of ambient lighting image data and artificial lighting image data, and calculating data for a combined image based on aligned ambient lighting image data and artificial lighting image data, wherein image data for the combined image is selected to maximize an objective quality criterion of the combined image. The method may further include determining an image parameter based on ambient lighting image data, blending image data associated with the artificial lighting and the combined image based on the image parameter to generate a tone rendered image.
摘要:
A camera that provides for a panorama mode of operation that stitches together two or more images to create a single image with a wide format. In panorama mode, a live view of a scene is transformed from rectangular coordinates to cylindrical coordinates and displayed by the camera. Also, an overlap portion between the previous image and the next image to be captured is characterized. In real time, after the previous image is captured, the overlap portion of the previous image is also transformed from rectangular coordinates into cylindrical coordinates. Next, the camera displays an overlay of at least a portion of the overlap portion onto the live view of the next image to be captured. And this overlay can assist the user in aligning the live view of the next image to be captured with the overlap portion of the previously captured image.
摘要:
Systems and methods are provided for reducing eye coloration artifacts in an image. In the system and method, an eye is detected in the image and a pupil color for the eye in the image and a skin color of skin in the image associated with the eye are determined. At least one region of artifact coloration in the eye in the image is then identified based on the pupil color and the skin color, and a coloration of the region is modified to compensate for the artifact coloration.
摘要:
Embodiments are directed towards enabling digital cameras to digitally process captured two dimensional image sequences at a real time video rate, to convert the two dimensional image sequences into stereoscopic three dimensional image sequences. In one embodiment, using a pipelining architecture, various statistics are obtained for a captured two dimensional sequence. The statistics are used to estimate depth within each frame image within the sequence, in real time. Using the depth data a disparity map is generated that is provided to a warping component to generate a second perspective of the two dimensional image. The two images for the frame provide a three dimensional perspective for the frame within the sequence. Together the two perspective images for the frame are provided to a video encoder component to encode the stereoscopic three dimensional frame for the sequence.
摘要:
A device and methods are provided for low-light imaging enhancement by a digital imaging device. In one embodiment, a method includes detecting an image associated with ambient lighting of a scene, detecting an image associated with artificial lighting of the scene, aligning the image associated with ambient lighting relative to the image associated with artificial lighting based on a motion parameter of ambient lighting image data and artificial lighting image data, and calculating data for a combined image based on aligned ambient lighting image data and artificial lighting image data, wherein image data for the combined image is selected to maximize an objective quality criterion of the combined image. The method may further include determining an image parameter based on ambient lighting image data, blending image data associated with the artificial lighting and the combined image based on the image parameter to generate a tone rendered image.
摘要:
A camera that provides for a panorama mode of operation that stitches together two or more images to create a single image with a wide format. In panorama mode, a live view of a scene is transformed from rectangular coordinates to cylindrical coordinates and displayed by the camera. Also, an overlap portion between the previous image and the next image to be captured is characterized. In real time, after the previous image is captured, the overlap portion of the previous image is also transformed from rectangular coordinates into cylindrical coordinates. Next, the camera displays an overlay of at least a portion of the overlap portion onto the live view of the next image to be captured. And this overlay can assist the user in aligning the live view of the next image to be captured with the overlap portion of the previously captured image.
摘要:
Embodiments are directed towards determining within a digital camera whether a pixel belongs to a foreground or background segment within a given image by evaluating a ratio of derivative and deviation metrics in an area around each pixel in the image, or ratios of derivative metrics across a plurality of images. For each pixel within the image, a block of pixels are examined to determine an aggregate relative derivative (ARD) in the block. The ARD is compared to a threshold value to determine whether the pixel is to be assigned in the foreground segment or the background segment. In one embodiment, a single image is used to determine the ARD and the pixel segmentation for that image. Multiple images may also be used to obtain ratios of a numerator of the ARD, useable to determine an extent of the foreground.