Abstract:
The present invention relates to energy-releasable beauty care products. The products are capable of absorbing energy, for example, from an electrical, magnetic, electromagnetic, light, or heat source, which alters the physicochemical state of the beauty care product such that it is easily removable through the utilization of the energy source.
Abstract:
The present invention relates to energy-releasable beauty care products. The products are capable of absorbing energy, for example, from an electrical, magnetic, electromagnetic, light, or heat source, which alters the physicochemical state of the beauty care product such that it is easily removable through the utilization of the energy source.
Abstract:
A method and apparatus to provide an extended band is described. The method includes pairing a watch and a host device. The method further includes monitoring a user's status with a plurality of sensors on the host device and/or the watch, and using the extended band to do one or more of: provide alerts to the user, based on the sensor data, control the extended band from one of the devices, and share data with third parties using the extended band.
Abstract:
An electronic device monitors accelerations using an inertial sensor. The electronic device identifies a current motion state based on the accelerations. The electronic device determines an application that subscribes to a motion state identification service and notifies the application of the current motion state.
Abstract:
This invention is directed to compounds of formula (I): where r, q, R, R2, R3, R4, R5a, R5b, R5c, R6a, R6b, R6c, R7, R8, and R9 are described herein, as single stereoisomers or as mixtures of stereoisomers, or pharmaceutically acceptable salts, solvates, clathrates, polymorphs, ammonium ions, N-oxides or prodrugs thereof; which are leukotriene A4 hydrolase inhibitors and therefore useful in treating inflammatory disorders. Pharmaceutical compositions comprising the compounds of the invention and methods of preparing the compounds of the invention are also disclosed.
Abstract:
A methodology for dynamic (i.e., run-time) uploading and execution of applications and drivers between devices (e.g., between “client” device and one or more (host) devices), in a fully automated manner, is described. The device which is to be hosted (e.g., the “client” device) initially probes its environment to determine which device or devices it is attached to (e.g., the “host” device(s)). Once it has correctly discerned the relevant host or target device(s), the client device includes the capability of immediately sending out (i.e., uploading) a particular driver or application (i.e., object or file of interest) for placement, and ultimately execution, at the host device. Once the particular object or file of interest has been “injected” into the host device and is executing, the client device may simply revert to a “listening mode” in which it waits to be told what to do (i.e., receive commands from the application or driver which is now executing at the host device). This approach is particularly well-suited for devices which serve as “add-on” devices (clients) to other devices (hosts) that are “smarter,” for instance, including more processing capability and/or memory. In this scenario, the client device enters into a dialog with a device with more resources for the purpose of harnessing the resources of the host device for operating the client or add-on device. The client device is, using this approach, able to start running (i.e., driver-directed operation) immediately upon attachment to a host device that can be identified.
Abstract:
A method and apparatus for providing improved images utilizing acceleration data is described. In one embodiment, the method utilizes the accelerometer data to time the taking of the image to minimize motion effects.
Abstract:
An apparatus for monitoring tire pressurization state in a tire has a magneto-mechanical pressure sensor in or on the tire and an electromagnetic excitation system. The electromagnetic excitation system is for interrogating the magneto-mechanical pressure sensor. The apparatus also has a receiver. The receiver is for receiving information from the electromagnetic excitation system. The apparatus also has a data interpretation system for translating the received information into the tire pressurization state. The data interpretation system is connected to a display. The display communicates the tire pressurization state to an operator.
Abstract:
A methodology for dynamic (i.e., run-time) uploading and execution of applications and drivers between devices (e.g., between “client” device and one or more (host) devices), in a fully automated manner, is described. The device which is to be hosted (e.g., the “client” device) initially probes its environment to determine which device or devices it is attached to (e.g., the “host” device(s)). Once it has correctly discerned the relevant host or target device(s), the client device includes the capability of immediately sending out (i.e., uploading) a particular driver or application (i.e., object or file of interest) for placement, and ultimately execution, at the host device. Once the particular object or file of interest has been “injected” into the host device and is executing, the client device may simply revert to a “listening mode” in which it waits to be told what to do (i.e., receive commands from the application or driver which is now executing at the host device). This approach is particularly well-suited for devices which serve as “add-on” devices (clients) to other devices (hosts) that are “smarter,” for instance, including more processing capability and/or memory. In this scenario, the client device enters into a dialog with a device with more resources for the purpose of harnessing the resources of the host device for operating the client or add-on device. The client device is, using this approach, able to start running (i.e., driver-directed operation) immediately upon attachment to a host device that can be identified.