Abstract:
The embodiments disclose a method of fabricating a stack, including replacing a metal layer of a stack imprint structure with an oxide layer, patterning the oxide layer stack using chemical etch processes to transfer the pattern image and cleaning etch residue from the stack imprint structure to substantially prevent contamination of the metal layers.
Abstract:
A method of performing writable optical recording of a medium to form multilevel oriented nano-structures therein, comprises steps of providing a disc-shaped, writable recording medium having a planar surface; and encoding data/information in the medium by forming a plurality of multilevel nano-structured pits in the surface by scanning with a focused spot of optical energy to form at least one data track therein, including scanning the optical spot in a cross-track direction while rotating the disc about a central axis.
Abstract:
Methods comprising providing a pre-patterned substrate having an array of thick walls, depositing a conforming layer on the pre-patterned substrate, etching the conforming layer from the top of the thick walls and the space between the walls, and etching the thick walls while leaving thin walls of conforming layer.
Abstract:
A method of fabricating a patterned magnetic recording medium, comprises steps of: (a) providing a layer stack including an uppermost non-magnetic interlayer; (b) forming a resist layer on the interlayer; (c) forming a first pattern comprising a first group of recesses extending through the resist layer and exposing a first group of spaced apart surface portions of the interlayer; (d) filling the first group of recesses with a layer of a hard mask material; (e) selectively removing the resist layer to form a second pattern comprising a second group of recesses extending through the hard mask layer and exposing a second group of spaced apart surface portions of the interlayer; and (f) filling the second group of recesses with a layer of a magnetically hard material forming a magnetic recording layer.
Abstract:
A recording system for magnetic storage devices, including a beam column for generating a beam, a platform for moving a magnetic storage medium relative to the beam, and a signal generator for sequentially, or in a continuously alternating manner, deflecting the beam. In turn, the beam is directed according to displacement of dots on the extent of the magnetic storage medium such that dots of a plurality of dot groupings can be written to on the extent during a single pass of the beam column above the extent.
Abstract:
A method of fabricating a master stamper/imprinter for manufacturing a patterned recording medium by nano-imprint lithography comprises steps of: (a) providing a substrate having a surface; (b) forming a layer of a hybrid resist material on the surface, the resist layer having an exposed upper surface; (c) subjecting selected areas of the exposed upper surface of the resist layer to an energy beam to form therein a latent image of a topographical pattern to be formed in the resist layer and having a correspondence to a pattern to be formed in a patterned recording medium; and (d) developing the latent image into the topographical pattern in the resist layer, wherein only those areas of the resist layer which have received an energy beam exposure dose between a positive-tone threshold dose D0p and a negative-tone threshold dose D0n are developed.
Abstract:
A method and apparatus for detecting a topographic feature on a media is described. More particularly, a light scatter detector is coupled to an atomic force microscope. The detector is used detect scattered optical energy reflected from the surface of the media to identify the topographic feature. The atomic force microscope may then be positioned in response to the topographic feature identified.
Abstract:
The present invention is used to form precise, optically detectable patterns on rotating members of a disk and spindle assembly of a disk drive used in data storage system. In particular, the invention employs an optical source to form optically detectable patterns on the rotating members of the disk drive. These optically detectable patterns are used to create an accurate clock track. The clock track may be used to create multiple accurate magnetic patterns on one or more disks attached to a disk and spindle assembly in a magnetic data storage system. By successively changing the radius at which the magnetic patterns are created it is then possible to create multiple magnetic patterns at successive radii with all such magnetic patterns having a precise geometric relationship to each other. Alternatively, the accurate clock pattern may stand alone as an encoder. Additionally, the present invention may also be used to form textured surfaces on a disk to control the flying characteristics of a magnetic head slider assembly. The present invention can also create textured surfaces which will serve as a resting area for the magnetic head slider assembly of a magnetic disk drive when the disk is not spinning.
Abstract:
A magnetic data storage medium includes a dedicated transducing head contact zone for engaging an air bearing slider, primarily when the disk is stationary and also during disk accelerations and decelerations. The contact zone has a dual baseline texture, formed by first creating a recessed region within the transducing head contact zone, and then by forming multiple nodules or other texturing features within the recessed region. The texturing features project upwardly from a recessed surface of the recessed region, and also project above an upper surface of the disk by an amount less than the texturing feature height. Consequently, the texturing features are large enough to counteract stiction due to liquid lubricant meniscus formation, yet also have heights sufficiently low relative to the upper surface to allow reduced transducer flying heights. According to a preferred texturing process, the recessed region consists of multiple individual recesses produced by applying a carbon layer to the disk, then forming cavities by selective laser ablation of the carbon layer.
Abstract:
Processes include aligning a disc with a template at a location so that the pattern from the template is transferred to the disc in a relative orientation. The relative orientation provides that when the disc with the transferred pattern is finally assembled into a hard disc drive, an inner diameter of the spindle hole of the disc may be abutted against an outer diameter of the disc drive spindle, and the data-containing patterns on the discs will be aligned concentrically with a center of the disc drive spindle. While the data-containing patterns are aligned concentrically with the disc drive spindle, the substrate itself is allowed to be non-concentric. Still other aspects include a disc having eccentric formations including PIM and one or more of bit patterns and servo information formed on a disc surface, the eccentricity of the formations is determined based on an expected difference between the radius of the spindle hole of the disc and the radius of the spindle on which the disc will be placed during assembly, with the PIM used to determine the angular alignment of the disc with the spindle.