Abstract:
A hard bias structure for biasing a free layer in a MR element within a read head is comprised of a composite hard bias layer having a Co78.6Cr5.2Pt16.2/Co65Cr15Pt20 configuration. The upper Co65Cr15Pt20 layer has a larger Hc value and a thickness about 2 to 10 times greater than that of the Co78.6Cr5.2Pt16.2 layer. The hard bias structure may also include a BCC underlayer such as FeCoMo which enhances the magnetic moment of the hard bias structure. Optionally, the thickness of the Co78.6Cr5.2Pt16.2 layer is zero and the Co65Cr15Pt20 layer is formed on the BCC underlayer. The present invention also encompasses a laminated hard bias structure. The Mrt value for the hard bias structure may be optimized by adjusting the thicknesses of the BCC underlayer and CoCrPt layers. As a result, a larger process window is realized and lower asymmetry output during a read operation is achieved.
Abstract:
A process for forming the write pole of a PMR head is described. This write pole is symmetrically located relative to its side shields, This is accomplished, not through optical alignment, but by coating the pole with a uniform layer of non-magnetic material of a predetermined and precise thickness, followed by the formation of the shield layer around this.
Abstract:
A laminated main pole layer is disclosed in which a non-AFC scheme is used to break the magnetic coupling between adjacent high moment layers and reduce remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. An amorphous material layer with a thickness of 3 to 20 Angstroms and made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, or Si is inserted between adjacent high moment stacks. The laminated structure also includes an alignment layer below each high moment layer within each stack. In one embodiment, a Ru coupling layer is inserted between two high moment layers in each stack to introduce an AFC scheme. An uppermost Ru layer is used as a CMP stop layer. A post annealing process may be employed to further reduce the anisotropy field (Hk).
Abstract:
A dynamic fly heater (DFH) for improved lifetime and better film uniformity is disclosed for a magnetic head. The heater has a lower amorphous Ta layer and an upper W layer to promote small grain size and reduced electro-migration. The composite film is especially advantageous for heaters greater than 1000 Angstroms thick where dR/R is difficult to control in the prior art. The DFH may be a (Ta/W)n laminate in which the Ta layers are about 30 Angstroms thick and the combined thickness of the W layers is from 400 to 1200 Angstroms. A Ta film is preferably sputter deposited with an Ar pressure of 3 to 5 mTorr and the W film is sputter deposited in the same chamber with a 3 to 20 mTorr Ar pressure. In one embodiment, a merged read/write head has one DFH in the read head and a second DFH in the write head.
Abstract:
A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total Hc, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW (normalized base line wandering) reject rates during a read operation are achieved.
Abstract:
A structure that is well suited to connecting an MTJ device to a CMOS integrated circuit is described. It is built out of three layers. The bottom layer serves as a seed layer for the center layer, which is alpha tantalum, while the third, topmost, layer is selected for its smoothness, its compatibility with the inter-layer dielectric materials, and its ability to protect the underlying tantalum. A method for its formation is also described.
Abstract:
A spin-valve magnetoresistive read element has a thin conductive lead layer of high sheet conductivity, high hardness, high melting point, high corrosion resistance and lacking the propensity for smearing, oozing, electromigration and nodule formation. Said lead layer is formed upon the hard magnetic longitudinal bias layer of an abutted junction spin-valve type magnetoresistive read head and said read head is therefore suitable for reading high density recorded disks at high RPM.
Abstract:
An improved process for manufacturing a spin valve structure that has buried leads is disclosed. A key feature is the inclusion in the process of a temporary protective layer over the seed layer on which the spin valve structure will be grown. This protective layer is in place at the time that photoresist (used to define the location of the spin valve relative to the buried leads and longitudinal bias layers) is removed. The protective layer is later removed as a natural byproduct of surface cleanup just prior to the formation of the spin valve itself.
Abstract:
An improved process for manufacturing a spin valve structure that has buried leads is disclosed. A key feature is the inclusion in the process of a temporary protective layer over the seed layer on which the spin valve structure will be grown. This protective layer remains in place while the buried leads as well as longitudinal bias means are formed. Processing includes use of photoresist liftoff. The protective layer is removed as a natural byproduct of surface cleanup just prior the formation of the spin valve.
Abstract:
A laminated main pole layer is disclosed in which a non-AFC scheme is used to break the magnetic coupling between adjacent high moment layers and reduce remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. An amorphous material layer with a thickness of 3 to 20 Angstroms and made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, or Si is inserted between adjacent high moment stacks. The laminated structure also includes an alignment layer below each high moment layer within each stack. In one embodiment, a Ru coupling layer is inserted between two high moment layers in each stack to introduce an AFC scheme. An uppermost Ru layer is used as a CMP stop layer. A post annealing process may be employed to further reduce the anisotropy field (Hk).