摘要:
A device for obtaining vital sign information of a living being comprises a detection unit that receives light in at least one wavelength interval reflected from at least a region of interest of a living being and that generates an input signal from the received light. A processing unit processes the input signal and derives vital sign information of said living being from said input signal by use of remote photoplethysmography. An illumination unit illuminates at least said region of interest with light, and a control unit controls said illumination unit based on said input signal and/or said derived vital sign information.
摘要:
The invention provides for a medical instrument for examining the cervix comprising an optical examination system, a processor for controlling the medical instrument, and a memory containing machine executable instructions. Execution of the instructions causes the processor to: acquire a cervical image using the optical examination system; calculate a set of interest point locations using a digital filter; calculate a filtered set of interest point locations using the set of interest point locations and a morphological filter; calculate a reduced set of interest points locations using the filtered set of interest point locations and a neighborhood based filter; calculate a classified set of interest point locations reduced set of interest points and a trained classification module; calculate a set of punctation locations using the classified set of interest point locations and a second neighborhood based filter; and calculate punctation mark regions using the punctation point locations.
摘要:
This invention relates to a method of selecting an optimal viewing angle position for a camera. A first quantitative score is determined for a first viewing angle position of the camera using pre-selected regions of interest as reference areas, the determining being performed in accordance to a pre-defined quantitative score rule. The angle position is adjusted from the first viewing angle position towards at least one second viewing angle position. For each at least one second viewing angle position a second quantitative score is determined in accordance to the pre-defined quantitative score rule, and finally a target viewing angle position is determined based on the determined quantitative scores.
摘要:
The present invention relates to a device (8) for determining tissue layer boundaries of a body (14), comprising a probe (10) for acquiring (S12) two or more ultrasound images (36) at adjacent positions of a surface (12) of the body (14), a converter (44) for converting (S14) said ultrasound images (36) separately to depth signals (46), wherein a depth signal (46) is obtained by summing intensities of one of said ultrasound images (36) along a line (66) of substantially constant depth in the body (14), a detector (48) for detecting (S16) a set of candidate tissue layer boundaries (50) for an ultrasound image (36) by thresholding the depth signal (46) obtained for said ultrasound image (36), a selection means (52) for selecting (S18) from a set of candidate tissue layer boundaries (50) a nearest candidate tissue layer boundary (54) that is nearest to the surface (12) of the body (14), and a processing means (56) for determining (S20) an actual tissue layer boundary (58) from the nearest candidate tissue layer boundaries (54) obtained for various ultrasound images (36).
摘要:
A device for obtaining vital sign information of a living being comprises a detection unit that receives light in at least one wavelength interval reflected from at least a region of interest of a living being and that generates an input signal from the received light. A processing unit processes the input signal and derives vital sign information of the living being from the input signal by use of remote photoplethysmography. An illumination unit illuminates at least the region of interest with light, and a control unit controls the illumination unit based on the input signal and/or the derived vital sign information.
摘要:
The present invention proposes to analyze movements of objects in video sequences (e.g. sport videos), by performing motion estimation to determine motion vectors at each frame. With the calculated motion vectors, the movements of the object(s) (e.g. athlete(s)) can be quantitatively measured. Based on this, movements in two videos can be compared at each individual frame of the video sequence. Different approaches (e.g., color coding) can be used to visualize and compare the movements. With motion estimation, intermediate frames can also be inserted to enable better movement comparison in two given videos.
摘要:
This invention relates to a method of selecting an optimal viewing angle position for a camera. A first quantitative score is determined for a first viewing angle position of the camera using pre-selected regions of interest as reference areas, the determining being performed in accordance to a pre-defined quantitative score rule. The angle position is adjusted from the first viewing angle position towards at least one second viewing angle position. For each at least one second viewing angle position a second quantitative score is determined in accordance to the pre-defined quantitative score rule, and finally a target viewing angle position is determined based on the determined quantitative scores.
摘要:
A system for accurately detecting a patient's movement during imaging procedures includes a camera for providing a stream of camera images of a part of a patient's exterior and a fiducial element mountable on part of the patient's exterior. The fiducial element is detectable in the stream of images. An image processor is configured to detect a displacement of the fiducial element based on consecutive images including in at least the stream of images and to generate an output signal indicative of the displacement. The fiducial element has an in-plane stiffness which is substantially larger than an in-plane stiffness of the part of the patient's exterior. In addition, the fiducial element and the part of the patient's exterior are provided with substantially equal outer in-plane dimensions.
摘要:
The present invention relates to a device (8) for determining tissue layer boundaries of a body (14), comprising a probe (10) for acquiring (S12) two or more ultrasound images (36) at adjacent positions of a surface (12) of the body (14), a converter (44) for converting (S14) said ultrasound images (36) separately to depth signals (46), wherein a depth signal (46) is obtained by summing intensities of one of said ultrasound images (36) along a line (66) of substantially constant depth in the body (14), a detector (48) for detecting (S16) a set of candidate tissue layer boundaries (50) for an ultrasound image (36) by thresholding the depth signal (46) obtained for said ultrasound image (36), a selection means (52) for selecting (S18) from a set of candidate tissue layer boundaries (50) a nearest candidate tissue layer boundary (54) that is nearest to the surface (12) of the body (14), and a processing means (56) for determining (S20) an actual tissue layer boundary (58) from the nearest candidate tissue layer boundaries (54) obtained for various ultrasound images (36).
摘要:
The invention provides for a medical instrument for examining the cervix comprising an optical examination system, a processor for controlling the medical instrument, and a memory containing machine executable instructions. Execution of the instructions causes the processor to: acquire a cervical image using the optical examination system; calculate a set of interest point locations using a digital filter; calculate a filtered set of interest point locations using the set of interest point locations and a morphological filter; calculate a reduced set of interest points locations using the filtered set of interest point locations and a neighborhood based filter; calculate a classified set of interest point locations reduced set of interest points and a trained classification module; calculate a set of punctation locations using the classified set of interest point locations and a second neighborhood based filter; and calculate punctation mark regions using the punctation point locations.