Abstract:
The present invention relates generally to restoration of services in a network. More particularly, the invention encompasses a scheme for randomized selection of equal cost links during restoration in a communication network. The invention further includes multiple schemes for restoring services. The network could consist of optical, ATM, FR, or IP/MPLS switches and cross-connects.
Abstract:
The present invention relates generally to restoration of services in a network. More particularly, the invention encompasses a scheme for randomized selection of equal cost links during restoration in a communication network. The invention further includes multiple schemes for restoring services. The network could consist of optical, ATM, FR, or IP/MPLS switches and cross-connects.
Abstract:
A method and a system for allocating restoration capacity in a network link in a communications network provides that a common pool of communication capacity is provisioned in a network link, such that the common pool of communication capacity includes spare capacity for new service and restoration capacity. A pool of pre-allocated communication capacity for future growth of at least one connection in the network link is also provisioned. The pool of pre-allocated communication capacity for future growth is available for restoration capacity, but not for spare capacity for new service. The communications network can be, for example, a private line (PL) network, a SONET-based network, an Asynchronous Transfer Mode (ATM)-based network, an Internet Protocol/MultiProtocol Label Switching (IP/MPLS)-based network or a frame relay (FR)-based network.
Abstract:
A data network wherein network links have an assigned service weight and a restoration weight that are used as factors for respectively determining an optimum primary data path and a back-up data path through the network. The restoration path is used in the event of a failure of the primary service path and a Dijkstra or similar algorithm may be used for determining these paths. Service weights may be assigned to the links to prioritize finding the shortest possible path, whereas restoration weights may be assigned to the links to find a path with the maximum available capacity.
Abstract:
Flexibility is achieved in provisioning communication rings with an integrated DCS that allows any port that is connected to a line interface unit within the integrated DCS to be coupled within the integrated DCS—pursuant to software controlled provisioning—to any other port that is connected to a line interface unit within the integrated DCS. This is accomplished by merging the cross connect fabrics of the ADM portions of the integrated DCS with the cross connect fabric of the DCS portion of the integrated DCS, by incorporating at least some of the switching controls of the ADMs in the ADM portion of the integrated DCS in the controller of the DCS, and by insuring that the SONET K-bytes can be passed by the controller of the flexible integrated DCS from any line interface unit to any other line interface unit.
Abstract:
A method of operating a switched communications network redirects certain types of messages away from the switch to free up switch resources for other messages, thereby decreasing the size of switch needed or delaying necessary switch size upgrading. Messages are redirected by intelligent concentrators that can connect certain types of messages to their destinations without routing them through the switch. For example, messages between an origination and a destination connected to the same concentrator need not be sent through the switch. Similarly, messages between originations and certain high-volume, long-duration destinations such as data service gateways can be connected directly without passing through the switch. The intelligent concentrators communicate with the switch on a control channel so that the switch remains aware of the status of each origination or destination (e.g., so that it knows not to attempt to route messages to an origination or destination that is in use).
Abstract:
A data network wherein network links have an assigned service weight and a restoration weight that are used as factors for respectively determining an optimum primary data path and a back-up data path through the network. The restoration path is used in the event of a failure of the primary service path and a Dijkstra or similar algorithm may be used for determining these paths. Service weights may be assigned to the links to prioritize finding the shortest possible path, whereas restoration weights may be assigned to the links to find a path with the maximum available capacity.
Abstract:
The present invention relates generally to restoration of services in a network. More particularly, the invention encompasses a scheme for randomized selection of equal cost links during restoration in a communication network. The invention further includes multiple schemes for restoring services. The network could consist of optical, ATM, FR, or IP/MPLS switches and cross-connects.
Abstract:
Switches within a telecommunications network exchange so-called available bandwidth messages, each of which advertises how much bandwidth remains unassigned on a respective link. The network is of a type in which circuits are provisioned with various predefined numbers of time slots (equivalent to bandwidth). The sending of an available bandwidth message for a given link is triggered by a change in the number of time slots available on that link if that change results in a change in the number of circuit bandwidths that can be accommodated by that link for a newly provisioned circuit.
Abstract:
A method and system for provisioning circuits on multiple parallel links with a single setup message is disclosed. A setup message specifying links in a circuit path is transmitted to switches along the circuit path. If a switch determines that a link specified in the setup message has insufficient bandwidth for the circuit, the switch substitutes a parallel link having sufficient bandwidth for the specified link in the circuit path. The setup message can indicate whether substitution for a link is permitted. This can be used to prevent substitution for links when provisioning service routes for new circuits in order to maintain diversity requirements, while allowing substitution for links when provisioning restoration routes for failed circuits in order to reduce restoration time.