Abstract:
The present invention provides deleted adenovirus vectors. The inventive adenovirus vectors carry one or more deletions in the IVa2, 100K, polymerase and/or preterminal protein sequences of the adenovirus genome. The adenoviruses may additionally contain other deletions, mutations or other modifications as well. In particular preferred embodiments, the adenovirus genome is multiply deleted, i.e., carries two or more deletions therein. The deleted adenoviruses of the invention are “propagation-defective” in that the virus cannot replicate and produce new virions in the absence of complementing function(s). Preferred adenovirus vectors of the invention carry a heterologous nucleotide sequence encoding a protein or peptide associated with a metabolic disorder, more preferably a protein or peptide associated with a lysosomal or glycogen storage disease, most preferably, a lysosomal acid α-glucosidase. Further provided are methods for producing the inventive deleted adenovirus vectors. Further provided are methods of administering the deleted adenovirus vectors to a cell in vitro or in vivo.
Abstract:
The present invention provides improved adenovirus vectors and packaging cell lines. One type of improved adenoviral vector comprises deletions within the E2b region of the adenoviral genome. These E2b-deleted virus are used in conjunction with novel cell lines that constitutively express E2b gene products. The present invention further provides adenoviral vectors deleted for all viral coding regions. These “gutted” vectors permit the transfer of large genes to cells as demonstrated herein by the transfer of the dystrophin gene to the muscle of mice. The E2b-deleted vectors and the gutted vectors provide improved adenoviral vectors useful for a wide variety of gene therapy applications.
Abstract:
A recombinant hybrid virus, including: (a) a deleted adenovirus vector genome comprising the adenovirus 5′ and 3′ cis-elements for viral replication and encapsidation, and further comprising a deletion in an adenovirus genomic region selected from the group consisting of: (i) the polymerase region, wherein said deletion essentially prevents the expression of a functional polymerase protein from said deleted region and said hybrid virus does not otherwise express a functional polymerase protein, (ii) the preterminal protein region, wherein said deletion essentially prevents the expression of a functional preterminal protein from said deleted region, and said hybrid virus does not otherwise express a functional preterminal protein, and (iii) both the regions of (i) and (ii); and (b) a recombinant adeno-associated virus (AAV) vector genome flanked by the adenovirus vector genome sequences of (a), said recombinant AAV vector genome comprising (i) AAV 5′ and 3′ inverted terminal repeats, (ii) an AAV packaging sequence, and (iii) a heterologous nucleic acid sequence, wherein said heterologous nucleic acid sequence is flanked by the 5′ and 3′ AAV inverted terminal repeats of (i). Methods of making and using the recombinant hybrid virus are also disclosed.
Abstract:
A recombinant hybrid virus which includes: (a) a deleted adenovirus vector genome having the adenovirus 5′ and 3′ cis-elements for viral replication and encapsidation and a deletion in an adenovirus genomic region selected from the polymerase region and/or the preterminal protein region, wherein the deletion essentially prevents the expression of a functional polymerase and/or preterminal protein from the deleted region and the hybrid virus does not otherwise express a functional polymerase protein; and (b) a recombinant adeno-associated virus (AAV) vector genome flanked by the adenovirus vector genome sequences of (a), wherein the recombinant AAV vector genome includes an AAV packaging sequence and a heterologous nucleic acid sequence, wherein the heterologous nucleic acid sequence is flanked by 5′ and 3′ AAV inverted terminal repeats.
Abstract:
A method of screening a subject for a proliferative disease risk factor comprises detecting the presence or absence of upregulation of the CLN3 gene in the subject. The upregulation of the CLN3 gene in the subject indicates the subject is at increased risk of developing a proliferative disease. Methods of screening compounds for the treatment of proliferative diseases based on the CLN3 gene and its product are also disclosed, along with methods of treating such diseases and vectors useful therefore.
Abstract:
The present invention provides deleted adenovirus vectors. The inventive adenovirus vectors carry one or more deletions in the IVa2, 100 K, polymerase and/or preterminal protein sequences of the adenovirus genome. The adenoviruses may additionally contain other deletions, mutations or other modifications as well. In particular preferred embodiments, the adenovirus genome is multiply deleted, i.e., carries two or more deletions therein. The deleted adenoviruses of the invention are “propagation-defective” in that the virus cannot replicate and produce new virions in the absence of complementing function(s). Preferred adenovirus vectors of the invention carry a heterologous nucleotide sequence encoding a protein or peptide associated with a metabolic disorder, more preferably a protein or peptide associated with a lysosomal or glycogen storage disease, most preferably, a lysosomal acid α-glucosidase. Further provided are methods for producing the inventive deleted adenovirus vectors. Further provided are methods of administering the deleted adenovirus vectors to a cell in vitro or in vivo.
Abstract:
The present invention provides improved adenovirus vectors and packaging cell lines. One type of improved adenoviral vector comprises deletions within the E2b region of the adenoviral genome. These E2b-deleted virus are used in conjunction with novel cell lines that constitutively express E2b gene products. The present invention further provides adenoviral vectors deleted for all viral coding regions. These "gutted" vectors permit the transfer of large genes to cells as demonstrated herein by the transfer of the dystrophin gene to the muscle of mice. The E2b-deleted vectors and the gutted vectors provide improved adenoviral vectors useful for a wide variety of gene therapy applications.
Abstract:
A method of screening a subject for a proliferative disease risk factor comprises detecting the presence or absence of upregulation of the CLN3 gene in the subject. The upregulation of the CLN3 gene in the subject indicates the subject is at increased risk of developing a proliferative disease. Methods of screening compounds for the treatment of proliferative diseases based on the CLN3 gene and its product are also disclosed, along with methods of treating such diseases and vectors useful therefore.
Abstract:
A method of screening a subject for a proliferative disease risk factor comprises detecting the presence or absence of upregulation of the CLN3 gene in the subject. The upregulation of the CLN3 gene in the subject indicates the subject is at increased risk of developing a proliferative disease. Methods of screening compounds for the treatment of proliferative diseases based on the CLN3 gene and its product are also disclosed, along with methods of treating such diseases and vectors useful therefore.
Abstract:
A recombinant hybrid virus, including: (a) a deleted adenovirus vector genome comprising the adenovirus 5′ and 3′ cis-elements for viral replication and encapsidation, and further comprising a deletion in an adenovirus genomic region selected from the group consisting of: (i) the polymerase region, wherein said deletion essentially prevents the expression of a functional polymerase protein from said deleted region and said hybrid virus does not otherwise express a functional polymerase protein, (ii) the preterminal protein region, wherein said deletion essentially prevents the expression of a functional preterminal protein from said deleted region, and said hybrid virus does not otherwise express a functional preterminal protein, and (iii) both the regions of (i) and (ii); and (b) a recombinant adeno-associated virus (AAV) vector genome flanked by the adenovirus vector genome sequences of (a), said recombinant AAV vector genome comprising (i) AAV 5′ and 3′ inverted terminal repeats, (ii) an AAV packaging sequence, and (iii) a heterologous nucleic acid sequence, wherein said heterologous nucleic acid sequence is flanked by the 5′ and the 3′ AAV inverted terminal repeats of (i). Methods of making and using the recombinant hybrid virus are also disclosed.