摘要:
The invention relates to an improved method for chemical-looping combustion of a solid hydrocarbon-containing feed using a particular configuration of the reduction zone with: a first reaction zone R1 operating under dense fluidized bed conditions; a second reaction zone R2; a fast separation zone S3 for separation of the unburnt solid feed particles, of fly ashes and of the oxygen-carrying material particles within a mixture coming from zone R2; fumes dedusting S4; a particle stream division zone D7, part of the particles being directly recycled to first reaction zone R1, the other part being sent to an elutriation separation zone S5 in order to collect the ashes through a line 18 and to recycle the dense particles through a line 20 to first reaction zone R1.The invention also relates to a chemical-looping combustion plant allowing said method to be implemented.
摘要:
A numerical procedure is disclosed to improve the prediction of heat fronts when simulating hot fluid injection in viscous hydrocarbon reservoirs. The mathematical model is composed of the conventional governing equations that describe multiphase fluid flow and energy balance. The reservoir geometry can be partitioned into a regular Cartesian grid or an irregular corner-point geometry grid. The numerical procedure uses the finite different (FD) method to solve the flow equations and the discontinuous Galerkin (DG) method to solve the energy balance equation. The proposed FD-DG method is an alternative to the traditional solution procedure that uses the FD method to solve both the flow and the energy equations. The traditional method has the deficiency that it may require excessive number of grid cells to achieve acceptable resolution of the heat fronts. The proposed FD-DG method significantly reduces numerical dispersion near discontinuities in the solution of the energy equation and therefore provides a better capture of the heat fronts. To obtain a desired accuracy in the energy equation solution, the FD-DG method can be orders of magnitude faster than the traditional method. The superiority of the FD-DG method is that it converges on coarser grids while the traditional method requires much finer grids.
摘要:
The invention relates to a method for upgrading heavy liquid fractions resulting from oil refining, by combustion in a fluidized-bed chemical looping process. The method according to the invention allows to produce energy by oxidizing totally the heavy liquid feeds while allowing direct capture of the CO2 emitted in the combustion fumes. The method according to the invention also allows a synthesis gas to be produced.
摘要:
A numerical procedure is disclosed to improve the prediction of heat fronts when simulating hot fluid injection in viscous hydrocarbon reservoirs. The mathematical model is composed of the conventional governing equations that describe multiphase fluid flow and energy balance. The reservoir geometry can be partitioned into a regular Cartesian grid or an irregular corner-point geometry grid. The numerical procedure uses the finite different (FD) method to solve the flow equations and the discontinuous Galerkin (DG) method to solve the energy balance equation. The proposed FD-DG method is an alternative to the traditional solution procedure that uses the FD method to solve both the flow and the energy equations. The traditional method has the deficiency that it may require excessive number of grid cells to achieve acceptable resolution of the heat fronts. The proposed FD-DG method significantly reduces numerical dispersion near discontinuities in the solution of the energy equation and therefore provides a better capture of the heat fronts. To obtain a desired accuracy in the energy equation solution, the FD-DG method can be orders of magnitude faster than the traditional method. The superiority of the FD-DG method is that it converges on coarser grids while the traditional method requires much finer grids.
摘要:
The present invention relates to a method of preparing synthetic crude oil from a heavy crude reservoir, comprising: (a) extracting the heavy crude oil using a steam technology; (b) separating the crude extracted and the water; (c) separating the crude into at least one light cut and one heavy cut; (d) converting said heavy cut to a lighter product and a residue; (e) optionally, partially or totally hydroprocessing the converted product and/or the light cut(s) obtained upon separation (c); (f) burning and/or gasifying the conversion residue in the presence of metal oxides in at least one chemical looping cycle producing CO2-concentrated fumes in order to allow CO2 capture, the optionally hydroprocessed converted product and light separation cut(s) making up the synthetic crude oil, said combustion allowing to generate steam and/or electricity, and said gasification allowing to generate hydrogen, the steam and/or the electricity thus generated being used for extraction (a), and/or the electricity and/or the hydrogen thus generated being used for conversion (d) and/or hydroprocessing (e).
摘要:
The invention relates to an integrated method of in-situ oxygen production, chemical looping combustion and gasification of liquid, solid or gaseous fuels allowing combustion of coal, petroleum coke and/or liquid hydrocarbons and notably heavy and/or extra heavy or bituminous residues for production of synthesis gas under pressure and/or energy.
摘要:
The object of the invention is a combustion method for a solid feed using a chemical loop wherein an oxygen-carrying material circulates, said method comprising at least: contacting the solid feed particles in the presence of metallic oxide particles in a first reaction zone (R1) operating in dense fluidized bed mode, carrying out combustion of the gaseous effluents from first reaction zone (R1) in the presence of metallic oxide particles in a second reaction zone (R2), separating in a separation zone (S3) the unburnt particles and the metallic oxide particles within a mixture coming from second reaction zone (R2), re-oxidizing the metallic oxide particles in an oxidation zone (R4) prior to sending them back to first zone (R1).
摘要:
The invention relates to a device and to an improved method for chemical looping combustion of at least one liquid hydrocarbon feed, comprising: mixing the liquid feed with an atomization gas so as to feed it into a metal oxide particle transport zone (2), upstream from combustion zone (3), through atomization means (6) allowing to form finely dispersed liquid droplets in the atomization gas; vaporization of the liquid feed in form of droplets into contact with at least part of metal oxide particles in transport zone (2), the operating conditions in transport zone (2) being so selected that the superficial gas velocity after vaporization of the liquid feed is higher than the transport velocity of the metal oxide particles; sending all of the effluents from transport zone (2) to a combustion zone (3) allowing reduction of the metal oxide particles, said combustion zone (3) comprising at least one dense-phase fluidized bed. The invention can be advantageously applied to CO2 capture and energy production.
摘要:
The object of the invention is a process for treating bituminous feedstocks wherein the energy required to separate the organic and mineral fractions of said bituminous feedstocks in a treatment unit powered by hot water is provided by chemical looping combustion (CLC).
摘要:
The invention relates to an energetically self-sufficient syngas production method in at least one chemical loop. The chemical loop involves at least three distinct oxidation, reduction and gasification reaction zones: 1. at least one air-supplied oxidation reaction zone R1, referred to as “air” reactor, where the reaction of oxidation of the metallic oxides takes place affer reduction, 2. at least one combustion reduction reaction zone R2, referred to as “fuel” reactor, where the feed combustion reaction takes place in the presence of the oxygen present in the metallic oxides, 3. at least one gasification reaction zone R3, referred to as “gasification” reactor, for gasification of the solid and/or liquid feeds in order to produce a syngas, said gasification being catalysed by the at least partly reduced metallic oxides from R2.