Abstract:
A device and method for permitting multi-modal treatment of vascular lesions are disclosed. The device includes an outer delivery catheter, an inner delivery catheter, and a guidewire. The catheter is designed to pass through the inner lumen of the outer delivery catheter, and the guidewire is designed to pass through the inner lumen of the inner delivery catheter. A stent may be loaded inside the outer delivery catheter, with the distal tip of the inner delivery catheter abutting against the proximal end of the self-expanding stent, for pushing the stent distally through the outer delivery catheter.
Abstract:
An apparatus for repairing a vessel using a multicapsule catheter having first, second and third capsules for releasably retaining each terminal end of a bifurcated graft. The method for repairing the vessel includes the steps of performing a surgical technique to gain remote access to the vessel, advancing the multicapsule catheter within the vessel and releasing the bifurcated graft within the vessel to thereby repair the vessel.
Abstract:
An intracorporeal grasping device includes a tubular member for entering a lumen of a human body and the tubular member having a distal end portion. An elongated core member is disposed within the interior cavity of the tubular member for rotational or slidable movement within the tubular member and the elongated core member having a proximal end portion and a distal end portion. The elongated core member includes a grasping configuration for capturing an object (e.g., clot or debris) therein.
Abstract:
An intraluminal grafting system having a delivery catheter comprising a flexible elongate tubular member having proximal and distal extremities and a capsule mounted on the distal extremity of the tubular member and including a graft disposed within the capsule. The graft is comprised of a tubular body configured to be secured to a blood vessel by a self expanding attachment system. The attachment system comprises a generally sinusoidal wire frame having apices which extend longitudinally outward from the end of the tubular body apices which are secured within the tubular body. Both the protruding apices and the base apices are formed with helices which bias the attachment system radially outward. The attachment system further includes a plurality of lumen piercing members that are oriented in a responsive relationship to the radially outward bias of the attachment system. Furthermore, the graft may be configured with a plurality of synthetic fiber tufts secured to the outer surface of the tubular body to facilitate sealing the graft within the vessel. The graft may also include a plurality of crimps formed in the tubular body of the graft.
Abstract:
A stent designed for catheter delivery to a target neurovascular site via a tortuous path, in a contracted state, and deployment at the target site, in an expanded state, is disclosed. The stent includes a plurality of expandable tubular members, where member is composed of a continuous wire element forming a plurality of wave segments, and segment contains a pair of opposite looped peaks having a wave shape such that the distance between adjacent sides of a wave, on proceeding from a peak toward opposite peaks, increases monotonically with an inflection point therebetween. The expandable tubular members are joined through adjacent peaks by axial connectors Radial expansion of the stent from a contracted to expanded state is accommodated by movement of adjacent wave-segment peaks away from one another, without significant change in the axial dimension of the stent. Also disclosed are a system incorporating the stent, and a method of treating a neurovascular abnormality.
Abstract:
A stent designed for catheter delivery to a target neurovascular site via a tortuous path, in a contracted state, and deployment at the target site, in an expanded state, is disclosed. The stent includes a plurality of expandable tubular members, where member is composed of a continuous wire element forming a plurality of wave segments, and segment contains a pair of opposite looped peaks having a wave shape such that the distance between adjacent sides of a wave, on proceeding from a peak toward opposite peaks, increases monotonically with an inflection point therebetween. The expandable tubular members are joined through adjacent peaks by axial connectors. Radial expansion of the stent from a contracted to expanded state is accommodated by movement of adjacent wave-segment peaks away from one another, without significant change in the axial dimension of the stent. Also disclosed are a system incorporating the stent, and a method of treating a neurovascular abnormality.
Abstract:
A stent designed for catheter delivery to a target neurovascular site via a tortuous path, in a contracted state, and deployment at the target site, in an expanded state, is disclosed. The stent includes a plurality of expandable tubular members, where member is composed of a continuous wire element forming a plurality of wave segments, and segment contains a pair of opposite looped peaks having a wave shape such that the distance between adjacent sides of a wave, on proceeding from a peak toward opposite peaks, increases monotonically with an inflection point therebetween. The expandable tubular members are joined through adjacent peaks by axial connectors. Radial expansion of the stent from a contracted to expanded state is accommodated by movement of adjacent wave-segment peaks away from one another, without significant change in the axial dimension of the stent. Also disclosed are a system incorporating the stent, and a method of treating a neurovascular abnormality.
Abstract:
An intracorporeal grasping device includes a tubular member for entering a lumen of a human body and the tube member having a distal end portion. An elongated core member is disposed with the interior cavity of the tubular member for rotational or slidably movement within the tubular member and the elongated core member having a proximal end portion and a distal end portion. The elongated core member comprises a uniform diameter tube having some flexibility at the proximal end portion and greater flexibility while along a longitudinal axis in a direction towards the distal end portion; and a grasping configuration is provided for capturing an object (e.g., clot or debris) therein and the assembly may have a proximal end secured to the distal end of the elongated core member. The configuration has an expanded and contracted configuration, and distal sections configured to grasp an object. The grasping configuration may be formed by at least one movable jaw attached to the distal end portion of the elongated core member and a length portion of the distal end portion of the tube member. The grasping configuration may include unitarily formed plurality of movable jaws attached to the distal end portion of the elongated core member. Further, the grasping configuration may be formed by a plurality of loop members attached to the distal end portion of the elongated core member. Further, the grasping configuration may be formed by at least one spiral member having a distal tip for penetrating an object to be removed from a human body lumen. The device has the spiral member provided at the distal end portion of the elongated core member. The grasping configuration can be formed by at least one web member for retaining an object to be removed from a human body lumen, the web member being provided at the distal end portion of the elongated core member.
Abstract:
An intracorporeal grasping device includes a tubular member for entering a lumen of a human body and the tubular member having a distal end portion. An elongated core member is disposed within the interior cavity of the tubular member for rotational or slidable movement within the tubular member and the elongated core member having a proximal end portion and a distal end portion. The elongated core member includes a grasping configuration for capturing an object (e.g., clot or debris) therein.
Abstract:
A stent designed for catheter delivery to a target neurovascular site via a tortuous path, in a contracted state, and deployment at the target site, in an expanded state, is disclosed. The stent includes a plurality of expandable tubular members, where member is composed of a continuous wire element forming a plurality of wave segments, and segment contains a pair of opposite looped peaks having a wave shape such that the distance between adjacent sides of a wave, on proceeding from a peak toward opposite peaks, increases monotonically with an inflection point therebetween. The expandable tubular members are joined through adjacent peaks by axial connectors. Radial expansion of the stent from a contracted to expanded state is accommodated by movement of adjacent wave-segment peaks away from one another, without significant change in the axial dimension of the stent. Also disclosed are a system incorporating the stent, and a method of treating a neurovascular abnormality.